Introduction to Deep Learning (The MIT Press)
暫譯: 深度學習導論 (麻省理工學院出版社)

Eugene Charniak

買這商品的人也買了...

相關主題

商品描述

A project-based guide to the basics of deep learning.

 

This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach.

Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.

商品描述(中文翻譯)

基於專案的深度學習基礎指南。

 

這本簡明的專案驅動指南帶領讀者通過一系列程式編寫任務,介紹深度學習在人工智慧領域中的應用,如計算機視覺、自然語言處理和強化學習。作者是一位專注於自然語言處理的資深人工智慧研究者,涵蓋了前饋神經網絡(feed-forward neural nets)、卷積神經網絡(convolutional neural nets)、詞嵌入(word embeddings)、遞迴神經網絡(recurrent neural nets)、序列到序列學習(sequence-to-sequence learning)、深度強化學習(deep reinforcement learning)、無監督模型(unsupervised models)及其他基本概念和技術。學生和從業者通過在開源機器學習框架 Tensorflow 中編寫程式來學習深度學習的基礎。作者寫道:「我發現通過坐下來編寫程式來學習計算機科學材料是最有效的」,這本書也反映了這種方法。

每一章都包括一個程式專案、練習題和進一步閱讀的參考資料。早期的章節專門介紹 Tensorflow 及其與廣泛使用的程式語言 Python 的介面。需要具備線性代數、多變量微積分以及機率和統計的基礎知識,還需要對 Python 編程有基本了解。這本書可用於本科和研究生課程;從業者會發現它是一本必備的參考書。