Machines Like Us: Toward AI with Common Sense
暫譯: 像我們的機器:邁向具常識的人工智慧

Brachman, Ronald J., Levesque, Hector J.

買這商品的人也買了...

相關主題

商品描述

How we can create artificial intelligence with broad, robust common sense rather than narrow, specialized expertise.

It's sometime in the not-so-distant future, and you send your fully autonomous self-driving car to the store to pick up your grocery order. The car is endowed with as much capability as an artificial intelligence agent can have, programmed to drive better than you do. But when the car encounters a traffic light stuck on red, it just sits there--indefinitely. Its obstacle-avoidance, lane-following, and route-calculation capacities are all irrelevant; it fails to act because it lacks the common sense of a human driver, who would quickly figure out what's happening and find a workaround. In Machines like Us, Ron Brachman and Hector Levesque--both leading experts in AI--consider what it would take to create machines with common sense rather than just the specialized expertise of today's AI systems.

Using the stuck traffic light and other relatable examples, Brachman and Levesque offer an accessible account of how common sense might be built into a machine. They analyze common sense in humans, explain how AI over the years has focused mainly on expertise, and suggest ways to endow an AI system with both common sense and effective reasoning. Finally, they consider the critical issue of how we can trust an autonomous machine to make decisions, identifying two fundamental requirements for trustworthy autonomous AI systems: having reasons for doing what they do, and being able to accept advice. Both in the end are dependent on having common sense.

商品描述(中文翻譯)

我們如何能夠創造具有廣泛、穩健常識的人工智慧,而非狹隘、專門的專業知識。

在不遠的未來,你將你的全自動自駕車送到商店去取你的雜貨訂單。這輛車擁有人工智慧代理所能具備的所有能力,程式設計上比你開得更好。但是當這輛車遇到一個卡在紅燈上的交通信號燈時,它就那樣靜靜地停著——無限期地。它的避障、車道跟隨和路徑計算能力都無關緊要;它無法行動,因為它缺乏人類駕駛者的常識,人類駕駛者會迅速弄清楚發生了什麼並找到解決辦法。在Machines like Us中,Ron Brachman和Hector Levesque——兩位人工智慧領域的專家——探討了創造具有常識的機器所需的條件,而不僅僅是當今人工智慧系統的專業知識。

Brachman和Levesque利用卡住的交通信號燈和其他相關的例子,提供了一個易於理解的說明,說明如何將常識構建到機器中。他們分析了人類的常識,解釋了人工智慧多年來主要專注於專業知識的原因,並提出了賦予人工智慧系統常識和有效推理的方法。最後,他們考慮了如何信任一個自主機器做出決策的關鍵問題,確定了值得信賴的自主人工智慧系統的兩個基本要求:有理由做他們所做的事情,以及能夠接受建議。這兩者最終都依賴於擁有常識。

作者簡介

Ronald J. Brachman is Director of the Jacobs Technion-Cornell Institute at Cornell Tech in New York City and Professor of Computer Science at Cornell University. During a long career in industry, he held leadership positions at Bell Labs, Yahoo, and DARPA. Hector J. Levesque is Professor Emeritus in the Department of Computer Science at the University of Toronto. He is the author of Common Sense, the Turing Test, and the Quest for Real AI (MIT Press), and other books.

作者簡介(中文翻譯)

羅納德·J·布拉赫曼是位於紐約市康奈爾科技的雅各布斯技術-康奈爾研究所所長,以及康奈爾大學的計算機科學教授。在他漫長的產業生涯中,他曾在貝爾實驗室、雅虎和國防高級研究計劃局(DARPA)擔任領導職位。赫克托·J·萊維克是多倫多大學計算機科學系的名譽教授。他是《常識、圖靈測試與真實人工智慧的探索》(MIT Press)及其他書籍的作者。