Data Just Right: Introduction to Large-Scale Data & Analytics (Paperback)
暫譯: 數據恰到好處:大型數據與分析入門 (平裝本)
Michael Manoochehri
- 出版商: Addison Wesley
- 出版日期: 2013-12-19
- 售價: $1,320
- 貴賓價: 9.5 折 $1,254
- 語言: 英文
- 頁數: 256
- 裝訂: Paperback
- ISBN: 0321898656
- ISBN-13: 9780321898654
-
相關分類:
NoSQL、大數據 Big-data、雲端運算
立即出貨 (庫存=1)
買這商品的人也買了...
-
$620$490 -
$780$663 -
$1,280$1,216 -
$820$541 -
$1,881Doing Data Science: Straight Talk from the Frontline (Paperback)
-
$480$408 -
$499$424 -
$880$695 -
$680$578 -
$320$253 -
$550$435 -
$2,410$2,290 -
$380$199 -
$560$442 -
$1,485$1,411 -
$450$356 -
$500$395 -
$1,650$1,568 -
$1,200$840 -
$720$562 -
$420$332 -
$1,048$1,027 -
$1,300$1,274 -
$798Deep Learning with Hadoop (Paperback)
-
$550$468
相關主題
商品描述
Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions
Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets; distributed cloud computing offers the resources to store and analyze them; and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on “Big Data” have been little more than business polemics or product catalogs. Data Just Right is different: It’s a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist.
Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that’s where you can derive the most value.
Manoochehri shows how to address each of today’s key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You’ll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today’s leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery.
Coverage includes
- Mastering the four guiding principles of Big Data success—and avoiding common pitfalls
- Emphasizing collaboration and avoiding problems with siloed data
- Hosting and sharing multi-terabyte datasets efficiently and economically
- “Building for infinity” to support rapid growth
- Developing a NoSQL Web app with Redis to collect crowd-sourced data
- Running distributed queries over massive datasets with Hadoop, Hive, and Shark
- Building a data dashboard with Google BigQuery
- Exploring large datasets with advanced visualization
- Implementing efficient pipelines for transforming immense amounts of data
- Automating complex processing with Apache Pig and the Cascading Java library
- Applying machine learning to classify, recommend, and predict incoming information
- Using R to perform statistical analysis on massive datasets
- Building highly efficient analytics workflows with Python and Pandas
- Establishing sensible purchasing strategies: when to build, buy, or outsource
- Previewing emerging trends and convergences in scalable data technologies and the evolving role of the Data Scientist
商品描述(中文翻譯)
《讓大數據運作:實際案例與範例、實用程式碼、詳細解決方案》
大規模數據分析對幾乎每個企業來說都至關重要。行動和社交技術正在產生大量數據集;分散式雲計算提供了存儲和分析這些數據的資源;專業人士擁有全新的技術,包括 NoSQL 數據庫。然而,迄今為止,大多數關於「大數據」的書籍不過是商業論戰或產品目錄。《數據恰到好處》則有所不同:這是一本完全實用且不可或缺的指南,適合每位大數據的決策者、實施者和策略家。
Michael Manoochehri,前 Google 工程師和數據黑客,為需要能在有限資源和時間內實施的實用解決方案的專業人士撰寫。憑藉他豐富的經驗,他幫助你專注於構建應用程序,而不是基礎設施,因為這樣你能獲得最大的價值。
Manoochehri 展示了如何以具成本效益的方式,通過混合解決方案結合技術來解決當今的關鍵大數據用例。你將發現專家在管理大量數據集、可視化數據、構建數據管道和儀表板、選擇統計分析工具等方面的做法。在整個過程中,作者使用了許多當今領先的數據分析工具,包括 Hadoop、Hive、Shark、R、Apache Pig、Mahout 和 Google BigQuery,展示了各種技術。
內容涵蓋:
- 掌握大數據成功的四個指導原則,並避免常見的陷阱
- 強調協作,避免數據孤島問題
- 高效且經濟地托管和共享多 TB 數據集
- “為無限而建”以支持快速增長
- 使用 Redis 開發 NoSQL 網頁應用以收集群眾來源數據
- 使用 Hadoop、Hive 和 Shark 在大量數據集上運行分散式查詢
- 使用 Google BigQuery 構建數據儀表板
- 使用先進的可視化技術探索大型數據集
- 實施高效的數據轉換管道以處理大量數據
- 使用 Apache Pig 和 Cascading Java 庫自動化複雜處理
- 應用機器學習來分類、推薦和預測即將到來的信息
- 使用 R 對大量數據集進行統計分析
- 使用 Python 和 Pandas 構建高效的分析工作流程
- 建立合理的採購策略:何時建設、購買或外包
- 預覽可擴展數據技術中的新興趨勢和融合,以及數據科學家不斷演變的角色