Machine Learning for Factor Investing: Python Version
暫譯: 因子投資的機器學習:Python 版本

Coqueret, Guillaume, Guida, Tony

  • 出版商: CRC
  • 出版日期: 2023-08-08
  • 售價: $3,350
  • 貴賓價: 9.5$3,183
  • 語言: 英文
  • 頁數: 340
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367639726
  • ISBN-13: 9780367639723
  • 相關分類: Python程式語言Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out-of-reach. Machine learning for factor investing: Python version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics.

The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees and causal models.

All topics are illustrated with self-contained Python code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material, along with the content of the book, is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise.

商品描述(中文翻譯)

機器學習(ML)正在逐步改變定量金融和算法交易的領域。對沖基金和資產管理公司越來越多地採用 ML 工具,特別是在 alpha 信號生成和股票選擇方面。這個主題的技術性使得非專業人士難以跟上潮流,因為行話和編碼要求可能讓人感到遙不可及。《機器學習與因子投資:Python 版本》彌補了這一差距。它提供了基於現代機器學習的投資策略的全面介紹,這些策略依賴於公司的特徵。

本書涵蓋了從經濟理論到嚴謹的投資組合回測等廣泛主題,並包括數據處理和模型可解釋性。常見的監督學習算法,如樹模型和神經網絡,都是在風格投資的背景下進行解釋的,讀者還可以深入了解更複雜的技術,如自編碼器資產回報、貝葉斯加法樹和因果模型。

所有主題都配有獨立的 Python 代碼範例和片段,這些範例應用於一個包含超過 90 個預測變數的大型公共數據集。這些材料以及書籍內容都可以在線獲得,讓讀者能夠隨時重現和增強這些範例。如果您對定量金融有基本的了解,這種理論概念與實踐示例的結合將幫助您快速學習並加深您的金融和技術專業知識。

作者簡介

Guillaume Coqueret is associate professor of finance and data science at EMLYON Business School. His recent research revolves around applications of machine learning tools in financial economics.

Tony Guida is co-head of Systematic Macro at RAM Active Investments. He is the editor and co-author of Big Data and Machine Learning in Quantitative Investment.

作者簡介(中文翻譯)

紀堯姆·科克雷特是EMLYON商學院的金融與數據科學副教授。他最近的研究圍繞機器學習工具在金融經濟學中的應用。

托尼·圭達是RAM Active Investments的系統性宏觀投資共同負責人。他是大數據與機器學習在量化投資中的應用的編輯和共同作者。