Mixture Model-Based Classification
暫譯: 基於混合模型的分類

McNicholas, Paul D.

  • 出版商: CRC
  • 出版日期: 2020-12-18
  • 售價: $2,510
  • 貴賓價: 9.5$2,385
  • 語言: 英文
  • 頁數: 236
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367736950
  • ISBN-13: 9780367736958
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

"This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri)

 

 

Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster

 

 

 

 

Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.

 

 

商品描述(中文翻譯)

「這是由該領域主要開發者之一所撰寫的模型基礎聚類和分類的精彩概述。McNicholas 提供了一個資源,我相信統計學及相關學科的研究人員將會長期使用。對於具有重尾和非對稱分佈的混合物的討論,將使這本書成為混合建模文獻中的權威現代參考。」(道格拉斯·斯坦利,密蘇里大學)

混合模型基礎分類是第一本專門針對基於混合模型的聚類和分類方法的專著。這本書適合既有的研究人員和該領域的新手。書中提供了混合模型作為分類工具的歷史,並廣泛考慮了高斯混合,包括因子分析器的混合和其他高維數據的方法。非高斯混合也被考慮,從參數化偏斜度和/或集中度的組件混合,到多個縮放分佈的混合。還考慮了幾個其他重要主題,包括用於縱向數據的聚類和分類的混合方法,以及如何定義聚類的討論。

保羅·D·麥克尼科拉斯是麥克馬斯特大學計算統計的加拿大研究主席,他是數學與統計系的教授。他的研究專注於基於混合模型的分類方法,特別關注聚類應用,並在該領域發表了大量的研究。他是幾本期刊的副編輯,並曾擔任多個關於混合模型的特刊的客座編輯。

作者簡介

Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.

作者簡介(中文翻譯)

保羅·D·麥克尼科拉斯(Paul D. McNicholas)是麥克馬斯特大學(McMaster University)計算統計學的加拿大研究主席,並且是數學與統計系的教授。他的研究專注於基於混合模型的分類方法,特別關注於聚類應用,並在該領域發表了大量的研究成果。他是多本期刊的副編輯,並曾擔任多個關於混合模型的特刊的客座編輯。