Basics of Matrix Algebra for Statistics with R
暫譯: R統計學的矩陣代數基礎

Fieller, Nick

  • 出版商: CRC
  • 出版日期: 2021-03-31
  • 售價: $2,400
  • 貴賓價: 9.5$2,280
  • 語言: 英文
  • 頁數: 248
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367783452
  • ISBN-13: 9780367783457
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

A Thorough Guide to Elementary Matrix Algebra and Implementation in R

 

 

Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject.

 

 

 

 

 

 

 

 

 

The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling.

 

 

 

 

 

 

 

 

 

In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers.

 

 

 

 

 

 

 

 

 

Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.

 

 

商品描述(中文翻譯)

初級矩陣代數及其在 R 中的實作完全指南

使用 R 的統計學矩陣代數基礎》提供了足夠的初級矩陣代數指南,以便進行專業課程,例如多變量數據分析和線性模型。它還涵蓋了進階主題,例如奇異矩陣和矩形矩陣的廣義逆以及分區矩陣的操作,適合希望深入研究該主題的讀者。

本書介紹了矩陣的定義以及加法、減法、乘法和反演的基本規則。後續主題包括行列式、特徵向量和特徵值的計算,以及對向量的線性和二次形式的微分。文本探討了這些概念如何在統計技術中出現,包括主成分分析、典型相關分析和線性建模。

除了矩陣的代數操作外,本書還提供了數值範例,說明如何手動計算和使用 R 進行計算。許多理論和數值練習,難度各異,幫助讀者評估自己對材料的理解。書末的概要解答使讀者能夠驗證所需的技術並獲得數值答案。

本書避免了向量空間和其他高級數學,展示了如何在 R 中操作矩陣和執行數值計算。它為讀者準備了更高級和專業的統計學習。

作者簡介

Dr. Nick Fieller is a retired senior lecturer in the School of Mathematics and Statistics and an honorary research fellow in archaeology at the University of Sheffield. His research interests include multivariate data analysis and statistical modeling in the pharmaceutical industry, archaeology, and forensic sciences.

作者簡介(中文翻譯)

尼克·菲勒博士是謝菲爾德大學數學與統計學院的退休高級講師,以及考古學的榮譽研究員。他的研究興趣包括多變量數據分析和在製藥業、考古學及法醫科學中的統計建模。