Pattern Recognition and Machine Learning (Hardcover)
暫譯: 模式識別與機器學習 (精裝版)
Christopher M. Bishop
- 出版商: Springer
- 出版日期: 2006-08-17
- 售價: $4,220
- 貴賓價: 9.5 折 $4,009
- 語言: 英文
- 頁數: 778
- 裝訂: Hardcover
- ISBN: 0387310738
- ISBN-13: 9780387310732
-
相關分類:
Machine Learning
-
其他版本:
Pattern Recognition and Machine Learning (Paperback)
已絕版
買這商品的人也買了...
-
深入淺出設計模式 (Head First Design Patterns)$880$695 -
MySQL 5 Certification Study Guide$2,380$2,261 -
深入淺出 Java 程式設計, 2/e (Head First Java, 2/e)$880$695 -
Java 認證 SCJP 5.0 猛虎出閘$650$514 -
鳥哥的 Linux 私房菜基礎學習篇, 2/e$780$663 -
Windows Server 2003 Active Directory 建置指南, 2/e$600$474 -
ASP.NET 2.0 深度剖析範例集$650$507 -
SQL 語法範例辭典$550$468 -
JavaScript 精緻範例辭典$450$383 -
Linux 驅動程式, 3/e (Linux Device Drivers, 3/e)$980$774 -
Visual C# 2005 建構資訊系統實戰經典教本$650$507 -
聖殿祭司的 ASP.NET 2.0 專家技術手冊─使用 C#$720$569 -
Linux 核心詳解, 3/e (Understanding the Linux Kernel, 3/e)$1,200$948 -
精通 Shell Scripting (Classic Shell Scripting)$620$490 -
PHP 5 & MySQL 程式設計, 2/e$580$493 -
次世代─Linux Ubuntu 玩全手冊$580$493 -
深入淺出物件導向分析與設計 (Head First Object-Oriented Analysis and Design)$880$695 -
鳥哥的 Linux 伺服器架設篇, 2/e & 鳥哥的 Linux 私房菜基礎學習篇, 2/e$1,560$1,326 -
C++ Primer, 4/e (中文版)$990$891 -
ASP.NET AJAX 應用剖析立即上手$580$452 -
現代嵌入式系統開發專案實務-菜鳥成長日誌與專案經理的私房菜$600$480 -
大話設計模式$620$490 -
$3,150The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2/e (Hardcover) -
$1,617Deep Learning (Hardcover) -
Reinforcement Learning: An Introduction, 2/e (Hardcover)$1,750$1,715
商品描述
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
商品描述(中文翻譯)
這是第一本從貝葉斯觀點介紹模式識別的教科書。本書提出了近似推斷演算法,允許在無法獲得精確答案的情況下快速獲得近似答案。它使用圖形模型來描述機率分佈,而其他書籍則未將圖形模型應用於機器學習。本書不假設讀者具備模式識別或機器學習的先前知識,但需要對多變量微積分和基本線性代數有一定的熟悉度,並且對機率的使用有一些經驗會有所幫助,儘管這不是必需的,因為本書包含了基本機率論的自成一體的介紹。
