Mastering Probabilistic Graphical Models using Python
暫譯: 精通使用 Python 的機率圖模型
Ankur Ankan, Abinash Panda
- 出版商: Packt Publishing
- 出版日期: 2015-07-26
- 定價: $1,470
- 售價: 6.0 折 $882
- 語言: 英文
- 頁數: 287
- 裝訂: Paperback
- ISBN: 1784394688
- ISBN-13: 9781784394684
-
相關分類:
Python、程式語言
立即出貨 (庫存=1)
買這商品的人也買了...
-
$480$379 -
$1,780$1,744 -
$1,188The Healthy Programmer: Get Fit, Feel Better, and Keep Coding (Paperback)
-
$1,617Computer Organization and Design: The Hardware/Software Interface, 5/e (Asian Edition)(IE-Paperback)
-
$2,500$2,375 -
$1,617Deep Learning (Hardcover)
-
$580$458 -
$1,842Linear Algebra and Learning from Data (Hardcover)
-
$980$774 -
$580$406
相關主題
商品描述
Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python
About This Book
- Gain in-depth knowledge of Probabilistic Graphical Models
- Model time-series problems using Dynamic Bayesian Networks
- A practical guide to help you apply PGMs to real-world problems
Who This Book Is For
If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.
What You Will Learn
- Get to know the basics of probability theory and graph theory
- Work with Markov networks
- Implement Bayesian networks
- Exact inference techniques in graphical models such as the variable elimination algorithm
- Understand approximate inference techniques in graphical models such as message passing algorithms
- Sampling algorithms in graphical models
- Grasp details of Naive Bayes with real-world examples
- Deploy probabilistic graphical models using various libraries in Python
- Gain working details of Hidden Markov models with real-world examples
In Detail
Probabilistic graphical models is a technique in machine learning that uses the concepts of graph theory to concisely represent and optimally predict values in our data problems.
Graphical models gives us techniques to find complex patterns in the data and are widely used in the field of speech recognition, information extraction, image segmentation, and modeling gene regulatory networks.
This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also run different inference algorithms on them. There is an entire chapter that goes on to cover Naive Bayes model and Hidden Markov models. These models have been thoroughly discussed using real-world examples.
商品描述(中文翻譯)
**透過實際問題和 Python 的示範程式碼範例掌握機率圖形模型**
## 本書介紹
- 深入了解機率圖形模型
- 使用動態貝葉斯網路建模時間序列問題
- 實用指南,幫助您將 PGMs 應用於現實世界的問題
## 本書適合誰
如果您是研究人員或機器學習愛好者,或是在數據科學領域工作並對貝葉斯學習或機率圖形模型有基本了解,本書將幫助您理解圖形模型的細節並在數據科學問題中使用它們。
## 您將學到什麼
- 了解機率論和圖論的基本知識
- 使用馬可夫網路
- 實作貝葉斯網路
- 在圖形模型中使用精確推理技術,例如變數消除演算法
- 理解圖形模型中的近似推理技術,例如訊息傳遞演算法
- 在圖形模型中的取樣演算法
- 透過實際範例掌握 Naive Bayes 的細節
- 使用 Python 中的各種庫部署機率圖形模型
- 透過實際範例獲得隱馬可夫模型的工作細節
## 詳細內容
機率圖形模型是一種機器學習技術,利用圖論的概念簡潔地表示並最佳化預測我們數據問題中的值。
圖形模型提供我們尋找數據中複雜模式的技術,並廣泛應用於語音識別、信息提取、圖像分割和基因調控網路建模等領域。
本書從機率論和圖論的基礎開始,然後討論各種模型和推理演算法。所有不同類型的模型都會討論,並附有創建和修改它們的程式碼範例,還會在這些模型上運行不同的推理演算法。有一整章專門介紹 Naive Bayes 模型和隱馬可夫模型,這些模型都使用實際範例進行了詳細討論。