Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (Hardcover)
暫譯: 臨床預測模型:開發、驗證與更新的實用方法(精裝版)

Ewout W. Steyerberg

  • 出版商: Springer
  • 出版日期: 2008-10-20
  • 售價: $9,810
  • 貴賓價: 9.5$9,320
  • 語言: 英文
  • 頁數: 500
  • 裝訂: Hardcover
  • ISBN: 038777243X
  • ISBN-13: 9780387772431
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Prediction models are important in various fields, including medicine, physics, meteorology, and finance. Prediction models will become more relevant in the medical field with the increase in knowledge on potential predictors of outcome, e.g. from genetics. Also, the number of applications will increase, e.g. with targeted early detection of disease, and individualized approaches to diagnostic testing and treatment. The current era of evidence-based medicine asks for an individualized approach to medical decision-making. Evidence-based medicine has a central place for meta-analysis to summarize results from randomized controlled trials; similarly prediction models may summarize the effects of predictors to provide individu- ized predictions of a diagnostic or prognostic outcome. Why Read This Book? My motivation for working on this book stems primarily from the fact that the development and applications of prediction models are often suboptimal in medical publications. With this book I hope to contribute to better understanding of relevant issues and give practical advice on better modelling strategies than are nowadays widely used. Issues include: (a) Better predictive modelling is sometimes easily possible; e.g. a large data set with high quality data is available, but all continuous predictors are dich- omized, which is known to have several disadvantages.

商品描述(中文翻譯)

預測模型在各個領域中都非常重要,包括醫學、物理學、氣象學和金融學。隨著對潛在結果預測因子的知識增加,例如來自遺傳學的知識,預測模型在醫學領域中的相關性將會提高。此外,應用的數量也將增加,例如針對疾病的早期檢測和個性化的診斷測試及治療方法。目前的循證醫學時代要求對醫療決策採取個性化的方法。循證醫學中,元分析在總結隨機對照試驗的結果中佔有中心地位;同樣,預測模型可以總結預測因子的影響,以提供個性化的診斷或預後結果預測。為什麼要閱讀這本書?我撰寫這本書的動機主要來自於預測模型的開發和應用在醫學出版物中往往不夠理想。通過這本書,我希望能夠促進對相關問題的更好理解,並提供比當前廣泛使用的建模策略更好的實用建議。問題包括:(a)更好的預測建模有時是容易實現的;例如,當有一個高質量的大數據集可用時,但所有連續預測因子卻被二分化,這是眾所周知的有幾個缺點。