Intelligent Computing Techniques in Biomedical Imaging: Methods, Case Studies, and Applications

Singh, Bikesh Kumar, Sinha, G. R.

  • 出版商: Academic Press
  • 出版日期: 2024-08-23
  • 售價: $6,380
  • 貴賓價: 9.5$6,061
  • 語言: 英文
  • 頁數: 318
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443159998
  • ISBN-13: 9780443159992
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Intelligent Computing Techniques in Biomedical Imaging: Methods, Case Studies, and Applications provides comprehensive and state-of-the-art applications of Computational Intelligence techniques used in biomedical image analysis for disease detection and diagnosis. The book offers readers a stepwise approach from fundamental to advanced techniques using real-life medical examples and tutorials. The editors have divided the book into five sections, from prerequisites to case studies. Section I presents the prerequisites, where the reader will find fundamental concepts needed for advanced topics covered later in this book. This primarily includes a thorough introduction to Artificial Intelligence, probability theory and statistical learning. The second section covers Computational Intelligence methods for medical image acquisition and pre-processing for biomedical images. In this section, readers will find AI applied to conventional and advanced biomedical imaging modalities such as X-rays, CT scan, MRI, Mammography, Ultrasound, MR Spectroscopy, Positron Emission Tomography (PET), Ultrasound Elastography, Optical Coherence Tomography (OCT), Functional MRI, Hybrid Modalities, as well as pre-processing topics such as medical image enhancement, segmentation, and compression. Section III covers description and representation of medical images. Here the reader will find various categories of features and their relevance in different medical imaging tasks. This section also discusses feature selection techniques based on filter method, wrapper method, embedded method, and more. The fourth section covers Computational Intelligence techniques used for medical image classification, including Artificial Neural Networks, Support Vector Machines, Decision Trees, Nearest Neighbor Classifiers, Random Forest, clustering, extreme learning, Convolution Neural Networks (CNN), and Recurrent Neural Networks. This section also includes a discussion of computer aided diagnosis and performance evaluation in radiology. The final section of Intelligent Computing Techniques in Biomedical Imaging provides readers with a wealth of real-world Case Studies for Computational Intelligence techniques in applications such as neuro-developmental disorders, brain tumor detection, breast cancer detection, bone fracture detection, pulmonary imaging, thyroid disorders, imaging technologies in dentistry, diagnosis of ocular diseases, cardiovascular imaging, and multimodal imaging.

商品描述(中文翻譯)

《生物醫學影像中的智能計算技術:方法、案例研究與應用》提供了計算智能技術在生物醫學影像分析中用於疾病檢測和診斷的全面且最先進的應用。本書以實際醫療範例和教程,為讀者提供從基礎到進階技術的逐步指導。編輯將本書分為五個部分,從前置知識到案例研究。第一部分介紹前置知識,讀者將在此找到進階主題所需的基本概念,主要包括對人工智能、概率論和統計學習的徹底介紹。第二部分涵蓋了用於生物醫學影像的醫療影像獲取和預處理的計算智能方法。在這一部分,讀者將發現人工智能應用於傳統和先進的生物醫學影像模式,如X光、CT掃描、MRI、乳腺攝影、超聲波、磁共振光譜、正電子發射斷層掃描(PET)、超聲彈性成像、光學相干斷層掃描(OCT)、功能性MRI、混合模式,以及醫療影像增強、分割和壓縮等預處理主題。第三部分涵蓋醫療影像的描述和表示。在這裡,讀者將找到各種特徵類別及其在不同醫療影像任務中的相關性。本部分還討論了基於過濾方法、包裝方法、嵌入方法等的特徵選擇技術。第四部分涵蓋用於醫療影像分類的計算智能技術,包括人工神經網絡、支持向量機、決策樹、最近鄰分類器、隨機森林、聚類、極限學習、卷積神經網絡(CNN)和遞歸神經網絡。本部分還包括計算機輔助診斷和放射學性能評估的討論。《生物醫學影像中的智能計算技術》的最後一部分為讀者提供了大量實際案例研究,涵蓋計算智能技術在神經發展障礙、腦腫瘤檢測、乳腺癌檢測、骨折檢測、肺部影像、甲狀腺疾病、牙科影像技術、眼科疾病診斷、心血管影像和多模態影像等應用中的實際案例。