Intelligent Fractal-Based Image Analysis: Applications in Pattern Recognition and Machine Vision

Nayak, Soumya Ranjan, Nayak, Janmenjoy, Muhammad, Khan

  • 出版商: Academic Press
  • 出版日期: 2024-06-06
  • 售價: $5,690
  • 貴賓價: 9.5$5,406
  • 語言: 英文
  • 頁數: 318
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443184682
  • ISBN-13: 9780443184680
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Intelligent Fractal-Based Image Analysis: Application in Pattern Recognition and Machine Vision provides insights into the current strengths and weaknesses of different applications as well as research findings on fractal graphics in engineering and science applications. The book aims to improve the exchange of ideas and coherence between various core computing methods and highlights the relevance of related application areas for advanced as well as novice-user application. The book presents core concepts, methodological aspects, and advanced feature opportunities, focusing on major, real-time applications in engineering and health science. It will appeal to researchers, data scientists, industry professionals, and graduate students. Fractals are infinite, complex patterns used in modeling physical and dynamic systems. Fractal theory research has increased across different fields of applications including engineering science, health science, and social science. Recent literature shows the vital role fractals play in digital image analysis, specifically in biomedical image processing. Fractal graphics is an interdisciplinary field that deals with how computers can be used to gain high-level understanding from digital images. Integrating artificial intelligence with fractal characteristics has resulted in new interdisciplinary research in the fields of pattern recognition and image processing analysis.

商品描述(中文翻譯)

《智能分形圖像分析:在模式識別和機器視覺中的應用》提供了對不同應用的現有優勢和不足的深入洞察,以及在工程和科學應用中對分形圖形的研究發現。該書旨在改善各種核心計算方法之間的思想交流和一致性,並強調相關應用領域對高級和新手用戶應用的相關性。該書介紹了核心概念、方法論方面和高級特性機會,重點關注工程和健康科學中的主要實時應用。它將吸引研究人員、數據科學家、行業專業人士和研究生。分形是用於建模物理和動態系統的無限復雜模式。分形理論研究在不同應用領域中不斷增加,包括工程科學、健康科學和社會科學。最近的文獻顯示,分形在數字圖像分析中的重要作用,特別是在生物醫學圖像處理中。分形圖形是一個跨學科領域,涉及計算機如何從數字圖像中獲得高級理解。將人工智能與分形特徵相結合,已經在模式識別和圖像處理分析領域產生了新的跨學科研究。