Machine Learning for Low-Latency Communications

Zhou, Yong, Zou, Yinan, Wu, Youlong

  • 出版商: Academic Press
  • 出版日期: 2024-10-15
  • 售價: $5,540
  • 貴賓價: 9.5$5,263
  • 語言: 英文
  • 頁數: 216
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443220735
  • ISBN-13: 9780443220739
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Machine Learning for Low-Latency Communications presents the principles and practice of various deep learning methodologies for mitigating three critical latency components: access latency, transmission latency, and processing latency. In particular, the book develops learning to estimate methods via algorithm unrolling and multiarmed bandit for reducing access latency by enlarging the number of concurrent transmissions with the same pilot length. Task-oriented learning to compress methods based on information bottleneck are given to reduce the transmission latency via avoiding unnecessary data transmission. Lastly, three learning to optimize methods for processing latency reduction are given which leverage graph neural networks, multi-agent reinforcement learning, and domain knowledge. Low-latency communications attracts considerable attention from both academia and industry, given its potential to support various emerging applications such as industry automation, autonomous vehicles, augmented reality and telesurgery. Despite the great promise, achieving low-latency communications is critically challenging. Supporting massive connectivity incurs long access latency, while transmitting high-volume data leads to substantial transmission latency.

商品描述(中文翻譯)

《低延遲通訊的機器學習》介紹了各種深度學習方法的原則和實踐,以減輕三個關鍵的延遲組件:接入延遲、傳輸延遲和處理延遲。特別是,本書通過算法展開和多臂賭徒方法開發了學習估計方法,以通過擴大相同導頻長度的並發傳輸數量來減少接入延遲。基於信息瓶頸的任務導向學習壓縮方法被提出,以通過避免不必要的數據傳輸來減少傳輸延遲。最後,提供了三種學習優化方法以減少處理延遲,這些方法利用了圖神經網絡、多智能體強化學習和領域知識。低延遲通訊受到學術界和產業界的廣泛關注,因為它有潛力支持各種新興應用,如工業自動化、自動駕駛車輛、擴增實境和遠程手術。儘管前景廣闊,實現低延遲通訊仍然面臨重大挑戰。支持大規模連接會導致長接入延遲,而傳輸高容量數據則會導致顯著的傳輸延遲。