Probability and Statistics for Computer Science

James L. Johnson

相關主題

商品描述

A unique probability guide for computer science

While many computer science curricula include only an introductory course on general probability, there is a recognized need for further study of this mathematical discipline within the specific context of computer science. Probability and Statistics for Computer Science develops introductory topics in probability with this particular emphasis, providing computer science students with an invaluable resource in their continued studies and professional research.

James Johnson's text begins with the basic definitions of probability distributions and random variables and then elaborates their properties and applications. Probability and Statistics for Computer Science treats the most common discrete and continuous distributions, showing how they find use in decision and estimation problems, and constructs computer algorithms for generating observations from the various distributions. This one-of-a-kind resource also:

  • Includes a thorough and rigorous development of all the necessary supporting mathematics

  • Provides an opportunity to reconnect applications with the theoretical concepts of distributions introduced in prerequisite courses

  • Gathers supporting topics in an appendix: set theory, limit processes, real number structure, Riemann-Stieltjes integrals, matrix transformation, and determinants

  • Uses computer science examples such as client-server performance evaluation and image processing

The author also addresses a variety of supporting topics, such as estimation arguments with limits, properties of power series, and Markov processes. Johnson's text proves an ideal resource for computer science students and practitioners interested in a probability study specific to their field.

商品描述(中文翻譯)

一本獨特的計算機科學概率指南

儘管許多計算機科學課程僅包含一門關於一般概率的入門課程,但在計算機科學的特定背景下,人們認識到有進一步研究這一數學學科的需求。《計算機科學的概率與統計》以此為重點發展了概率的入門主題,為計算機科學學生在他們的持續學習和專業研究中提供了一個寶貴的資源。

詹姆斯·約翰遜的著作從概率分佈和隨機變量的基本定義開始,然後詳細介紹了它們的性質和應用。《計算機科學的概率與統計》介紹了最常見的離散和連續分佈,展示了它們在決策和估計問題中的應用,並構建了從各種分佈生成觀察數據的計算機算法。這本獨一無二的資源還包括:

- 全面而嚴謹地發展了所有必要的支持數學
- 提供了將應用與先修課程中介紹的分佈的理論概念重新聯繫的機會
- 在附錄中收集了支持性主題:集合論、極限過程、實數結構、黎曼-斯蒂爾澤積分、矩陣變換和行列式
- 使用計算機科學的例子,如客戶端-服務器性能評估和圖像處理

作者還討論了各種支持性主題,如帶有極限的估計論證、冪級數的性質和馬爾可夫過程。詹姆斯·約翰遜的著作對於對計算機科學領域的概率研究感興趣的計算機科學學生和從業人員來說是一個理想的資源。