Categorical Data Analysis, 3/e (Hardcover)
暫譯: 類別資料分析(第三版,精裝本)
Alan Agresti
- 出版商: Wiley
- 出版日期: 2012-12-03
- 售價: $3,150
- 貴賓價: 9.8 折 $3,087
- 語言: 英文
- 頁數: 752
- 裝訂: Hardcover
- ISBN: 0470463635
- ISBN-13: 9780470463635
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨 (庫存=1)
買這商品的人也買了...
-
Database Management Systems, 3/e (IE-Paperback)$1,200$1,176 -
指標的藝術:程式設計最絢麗的星星, 2/e (平裝版)$580$458 -
為夢想單飛:一個台灣女生上哈佛的成長故事$260$221 -
ASP.NET MVC 4 網站開發美學$680$537 -
9 堂課學會 Microsoft SharePoint 2013 功能應用
$199$157 -
BIG DATA:讓你看見真實欲望 (Big Data, I can see your desire.)$320$253 -
Hyper-V 3.X 虛擬化技術企業現場實戰 (Windows Server 2012 Hyper-V Cookbook)$420$332 -
實戰 Exchange Server 2013 企業現場-安裝管理 x 資安防護 x 企業控管$520$411 -
打造 HTML5 + CSS3 網頁設計法則:jQuery 行動加碼, 2/e$520$411 -
iOS 7 程式設計實戰-171 個快速上手的開發技巧$480$379 -
培養與鍛鍊程式設計的邏輯腦:世界級程式設計大賽的知識、心得與解題分享, 2/e (CPE 大學程式能力檢定最佳參考用書)$520$406 -
JavaScript 深入精要 (JavaScript Enlightenment)$480$379 -
網頁互動式資料視覺化:使用 D3 (Interactive Data Visualization for the Web)$520$411 -
比 MySQL 快 60 倍-Redis 記憶體儲存資料庫快速上手$450$383 -
徹底研究 jQuery Mobile + PHP 手機程式及網站開發$680$578 -
Causal Inference in Statistics: A Primer (Paperback)$1,850$1,758 -
$1,683Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More, 3/e (Paperback) -
Data Visualization: A Practical Introduction$2,270$2,157 -
High-Dimensional Statistics: A Non-Asymptotic Viewpoint (Hardcover)$1,680$1,646 -
$1,842Linear Algebra and Learning from Data (Hardcover) -
Introduction to Probability, 2/e (Hardcover)$1,750$1,715 -
Mostly Harmless Econometrics: An Empiricist's Companion (Paperback)$2,130$2,024 -
Mathematics for Machine Learning (Paperback)$1,520$1,490 -
Introduction to Statistical Quality Control, 8/e (AE-Paperback)$1,900$1,862 -
Introductory Econometrics: A Modern Approach, 7/e (AE-Paperback)$1,620$1,539
商品描述
<內容簡介>
Praise for the Second Edition
"A must-have book for anyone expecting to do research and/or applications in categorical data analysis."
—Statistics in Medicine
"It is a total delight reading this book."
—Pharmaceutical Research
"If you do any analysis of categorical data, this is an essential desktop reference."
—Technometrics
The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis.
Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features:
· An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models
· Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis
· New sections introducing the Bayesian approach for methods in that chapter
· More than 100 analyses of data sets and over 600 exercises
· Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources
· A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions
Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
商品描述(中文翻譯)
內容簡介
對於第二版的讚譽
「這是一本任何希望在類別數據分析中進行研究和/或應用的人必備的書籍。」
——《醫學統計》
「閱讀這本書真是一種享受。」
——《藥物研究》
「如果你進行任何類別數據的分析,這是一本必不可少的桌面參考書。」
——《技術統計》
使用統計方法分析類別數據的需求急劇增加,特別是在生物醫學、社會科學和金融行業。針對新的發展,本書提供了對類別數據分析中最重要方法的全面介紹。
《類別數據分析》第三版總結了單變量和相關多變量類別反應的最新方法。讀者將會發現一種統一的廣義線性模型方法,將邏輯回歸和泊松及負二項對數線性模型與連續數據的正態回歸相連接。本版還包含:
- 強調邏輯回歸和Probit回歸方法,適用於獨立觀察的二元、有序和名義反應,以及具有邊際模型和隨機效應模型的聚類數據。
- 兩個新章節,介紹二元反應數據的替代方法,包括平滑和正則化方法、分類方法(如線性判別分析和分類樹)以及聚類分析。
- 新增部分介紹該章節方法的貝葉斯方法。
- 超過100個數據集的分析和600多個練習題。
- 每章末尾的註釋,提供最近研究的參考資料和未在文本中涵蓋的主題,並連結到超過1200個來源的參考書目。
- 一個補充網站,展示如何使用R和SAS;涵蓋文本中的所有示例,並提供有關SPSS和Stata的信息以及練習解答。
《類別數據分析》第三版是統計學家和方法學家的寶貴工具,適用於生物統計學家、社會和行為科學、醫學和公共衛生、行銷、教育、金融、生物和農業科學以及工業質量控制的研究人員。
