Biomedical Optics: Principles and Imaging (Hardcover)
暫譯: 生物醫學光學:原理與成像(精裝版)

Lihong V. Wang, Hsin-i Wu

  • 出版商: Wiley
  • 出版日期: 2007-05-01
  • 售價: $1,880
  • 貴賓價: 9.8$1,842
  • 語言: 英文
  • 頁數: 376
  • 裝訂: Hardcover
  • ISBN: 0471743046
  • ISBN-13: 9780471743040
  • 相關分類: 光學 Optics
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

相關主題

商品描述

Description

This entry-level textbook, covering the area of tissue optics, is based on the lecture notes for a graduate course (Bio-optical Imaging) that has been taught six times by the authors at Texas A&M University. After the fundamentals of photon transport in biological tissues are established, various optical imaging techniques for biological tissues will be covered. The imaging modalities will include ballistic imaging, quasi-ballistic imaging (optical coherence tomography), diffusion imaging, and ultrasound-aided hybrid imaging. The basic physics and engineering of each imaging technique will be emphasized.
 

Table of Contents

1. INTRODUCTION.

1.1.Motivation for optical imaging.

1.2.General behavior of light in biological tissue.

1.3.Basic physics of light-matter interaction.

1.4.Absorption and its biological origins.

1.5.Scattering and its biological origins.

1.6.Polarization and its biological origins.

1.7.Fluorescence and its biological origins.

1.8.Image characterization.

1.9.References.

1.10.Further readings.

1.11.Problems.

2. RAYLEIGH THEORY AND MIE THEORY FOR A SINGLE SCATTERER.

2.1.Introduction.

2.2.Summary of the Rayleigh theory.

2.3.Numerical example of the Rayleigh theory.

2.4.Summary of the Mie theory.

2.5.Numerical example of the Mie theory.

2.6.Appendix 2.A. Derivation of the Rayleigh theory.

2.7.Appendix 2.B. Derivation of the Mie theory.

2.8.References.

2.9.Further readings.

2.10.Problems.

3. MONTE CARLO MODELING OF PHOTON TRANSPORT IN BIOLOGICAL TISSUE.

3.1.Introduction.

3.2.Monte Carlo method.

3.3.Definition of problem.

3.4.Propagation of photons.

3.5.Physical quantities.

3.6.Computational examples.

3.7.Appendix 3.A. Summary of MCML.

3.8.Appendix 3.B. Probability density function.

3.9.References.

3.10.Further readings.

3.11.Problems.

4. CONVOLUTION FOR BROAD-BEAM RESPONSES.

4.1.Introduction.

4.2.General formulation of convolution.

4.3.Convolution over a Gaussian beam.

4.4.Convolution over a top-hat beam.

4.5.Numerical solution to convolution.

4.6.Computational examples.

4.7.Appendix 4.A. Summary of CONV.

4.8.References.

4.9.Further readings.

4.10.Problems.

5. RADIATIVE TRANSFER EQUATION AND DIFFUSION THEORY.

5.1.Introduction.

5.2.Definitions of physical quantities.

5.3.Derivation of the radiative transport equation.

5.4.Diffusion theory.

5.5.Boundary conditions.

5.6.Diffuse reflectance.

5.7.Photon propagation regimes.

5.8.References.

5.9.Further readings.

5.10.Problems.

6. HYBRID MODEL OF MONTE CARLO METHOD AND DIFFUSION THEORY.

6.1.Introduction.

6.2.Definition of problem.

6.3.Diffusion theory.

6.4.Hybrid model.

6.5.Numerical computation.

6.6.Computational examples.

6.7.References.

6.8.Further readings.

6.9.Problems.

7. SENSING OF OPTICAL PROPERTIES AND SPECTROSCOPY.

7.1.Introduction.

7.2.Collimated transmission method.

7.3.Spectrophotometry.

7.4.Oblique-incidence reflectometry.

7.5.White-light spectroscopy.

7.6.Time-resolved measurement.

7.7.Fluorescence spectroscopy.

7.8.Fluorescence modeling.

7.9.References.

7.10.Further readings.

7.11.Problems.

8. BALLISTIC IMAGING AND MICROSCOPY.

8.1.Introduction.

8.2.Characteristics of ballistic light.

8.3.Time-gated imaging.

8.4.Spatial-frequency filtered imaging.

8.5.Polarization-difference imaging.

8.6.Coherence-gated holographic imaging.

8.7.Optical heterodyne imaging.

8.8.Radon transformation and computed tomography.

8.9.Confocal microscopy.

8.10.Two-photon microscopy.

8.11.Appendix 8.A. Holography.

8.12.References.

8.13.Further readings.

8.14.Problems.

9. OPTICAL COHERENCE TOMOGRAPHY.

9.1.Introduction.

9.2.Michelson interferometry.

9.3.Coherence length and coherence time.

9.4.Time-domain OCT.

9.5.Fourier-domain rapid scanning optical delay line.

9.6.Fourier-domain OCT.

9.7.Doppler OCT.

9.8.Group velocity dispersion.

9.9.Monte Carlo modeling of OCT.

9.10.References.

9.11.Further readings.

9.12.Problems.

10. MUELLER OPTICAL COHERENCE TOMOGRAPHY.

10.1.Introduction.

10.2.Mueller calculus versus Jones calculus.

10.3.Polarization state.

10.4.Stokes vector.

10.5.Mueller matrix.

10.6.Mueller matrices for a rotator, a polarizer, and a retarder.

10.7.Measurement of Mueller matrix.

10.8.Jones vector.

10.9.Jones matrix.

10.10.Jones matrices for a rotator, a polarizer, and a retarder.

10.11.Eigenvectors and eigenvalues of Jones matrix.

10.12.Conversion from Jones calculus to Mueller calculus.

10.13.Degree of polarization in OCT.

10.14.Serial Mueller OCT.

10.15.Parallel Mueller OCT.

10.16.References.

10.17.Further readings.

10.18.Problems.

11. DIFFUSE OPTICAL TOMOGRAPHY.

11.1.Introduction.

11.2.Modes of diffuse optical tomography.

11.3.Time-domain system.

11.4.Direct-current system.

11.5.Frequency-domain system.

11.6.Frequency-domain theory: basics.

11.7.Frequency-domain theory: linear image reconstruction.

11.8.Frequency-domain theory: general image reconstruction.

11.9.Appendix 11.A. ART and SIRT.

11.10.References.

11.11.Further readings.

11.12.Problems.

12. PHOTOACOUSTIC TOMOGRAPHY.

12.1.Introduction.

12.2.Motivation for photoacoustic tomography.

12.3.Initial photoacoustic pressure.

12.4.General photoacoustic equation.

12.5.General forward solution.

12.6.Delta-pulse excitation of a slab.

12.7.Delta-pulse excitation of a sphere.

12.8.Finite-duration pulse excitation of a thin slab.

12.9.Finite-duration pulse excitation of a small sphere.

12.10.Dark-field confocal photoacoustic microscopy.

12.11.Synthetic aperture image reconstruction.

12.12.General image reconstruction.

12.13.Appendix 12.A. Derivation of acoustic wave equation.

12.14.Appendix 12.B. Green's function approach.

12.15.References.

12.16.Further readings.

12.17.Problems.

13. ULTRASOUND-MODULATED OPTICAL TOMOGRAPHY.

13.1.Introduction.

13.2.Mechanisms of ultrasonic modulation of coherent light.

13.3.Time-resolved frequency-swept UOT.

13.4.Frequency-swept UOT with parallel-speckle detection.

13.5.Ultrasonically modulated virtual optical source.

13.6.Reconstruction-based UOT.

13.7.UOT with Fabry-Perot interferometry.

13.8.References.

13.9.Further readings.

13.10.Problems.

APPENDIX A. DEFINITIONS OF OPTICAL PROPERTIES.

APPENDIX B. ACRONYMS USED IN THE BOOK.

商品描述(中文翻譯)

描述

這本入門級教科書涵蓋了組織光學的領域,基於作者在德州農工大學教授的研究生課程(生物光學成像)的講義,該課程已教授六次。在建立生物組織中光子傳輸的基本原理後,將涵蓋各種生物組織的光學成像技術。成像模式將包括彈道成像、準彈道成像(光學相干斷層掃描)、擴散成像和超聲輔助混合成像。每種成像技術的基本物理學和工程學將被強調。

目錄

1. 介紹
1.1. 光學成像的動機
1.2. 生物組織中光的普遍行為
1.3. 光與物質相互作用的基本物理學
1.4. 吸收及其生物學來源
1.5. 散射及其生物學來源
1.6. 偏振及其生物學來源
1.7. 螢光及其生物學來源
1.8. 圖像特徵化
1.9. 參考文獻
1.10. 進一步閱讀
1.11. 問題

2. 單一散射體的瑞利理論和米氏理論
2.1. 介紹
2.2. 瑞利理論的總結
2.3. 瑞利理論的數值範例
2.4. 米氏理論的總結
2.5. 米氏理論的數值範例
2.6. 附錄 2.A. 瑞利理論的推導
2.7. 附錄 2.B. 米氏理論的推導
2.8. 參考文獻
2.9. 進一步閱讀
2.10. 問題

3. 生物組織中光子傳輸的蒙特卡羅建模
3.1. 介紹
3.2. 蒙特卡羅方法
3.3. 問題定義
3.4. 光子的傳播
3.5. 物理量
3.6. 計算範例
3.7. 附錄 3.A. MCML的總結
3.8. 附錄 3.B. 機率密度函數
3.9. 參考文獻
3.10. 進一步閱讀
3.11. 問題

4. 寬束響應的卷積
4.1. 介紹
4.2. 卷積的一般公式
4.3. 高斯束的卷積
4.4. 頂帽束的卷積
4.5. 卷積的數值解
4.6. 計算範例
4.7. 附錄 4.A. 卷積的總結
4.8. 參考文獻
4.9. 進一步閱讀
4.10. 問題

5. 輻射傳輸方程和擴散理論
5.1. 介紹
5.2. 物理量的定義
5.3. 輻射傳輸方程的推導
5.4. 擴散理論
5.5. 邊界條件
5.6. 擴散反射率
5.7. 光子傳播範疇
5.8. 參考文獻
5.9. 進一步閱讀
5.10. 問題

6. 蒙特卡羅方法和擴散理論的混合模型
6.1. 介紹
6.2. 問題定義
6.3. 擴散理論
6.4. 混合模型
6.5. 數值計算
6.6. 計算範例
6.7. 參考文獻
6.8. 進一步閱讀
6.9. 問題

7. 光學性質的感測和光譜學
7.1. 介紹
7.2. 平行傳輸方法
7.3. 光譜光度法
7.4. 斜入射反射率測量
7.5. 白光光譜學
7.6. 時間解析測量
7.7. 螢光光譜學
7.8. 螢光建模
7.9. 參考文獻
7.10. 進一步閱讀
7.11. 問題

8. 彈道成像和顯微鏡學
8.1. 介紹
8.2. 彈道光的特性
8.3. 時間門控成像