Multi-Objective Optimization Using Evolutionary Algorithms
暫譯: 使用進化演算法的多目標優化

Kalyanmoy Deb, Deb Kalyanmoy

  • 出版商: Wiley
  • 出版日期: 2001-07-05
  • 售價: $1,078
  • 語言: 英文
  • 頁數: 518
  • 裝訂: Hardcover
  • ISBN: 047187339X
  • ISBN-13: 9780471873396
  • 相關分類: Algorithms-data-structures
  • 已絕版

買這商品的人也買了...

相關主題

商品描述

Evolutionary algorithms are very powerful techniques used to find solutions to real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run.
  • Comprehensive coverage of this growing area of research
  • Carefully introduces each algorithm with examples and in-depth discussion
  • Includes many applications to real-world problems, including engineering design anf scheduling
  • Accessible to those with limited knowledge of multi-objective optimization and evolutionary algorithms
This integrated presentation of theory, algorithms and examples will benefit those working and researching in the areas of optimization, optimal design anf evolutionary computing.

'Deb's book is complete, eminently readable, and the coverage is scholarly and thorough. It is my pleasure and duty to urge you to buy this book, read it, use it and enjoy it' - David E. Goldberg, University of Illinois at Urbana-Champaign, USA

Table of Contents

Foreword.

Preface.

Prologue.

Multi-Objective Optimization.

Classical Methods.

Evolutionary Algorithms.

Non-Elitist Multi-Objective Evolutionary Algorithms.

Elitist Multi-Objective Evolutionary Algorithms.

Constrained Multi-Objective Evolutionary Algorithms.

Salient Issues of Multi-Objective Evolutionary Algorithms.

Applications of Multi-Objective Evolutionary Algorithms.

Epilogue.

References.

Index.

商品描述(中文翻譯)

進化演算法是一種非常強大的技術,用於尋找現實世界中的搜尋和優化問題的解決方案。許多這些問題具有多重目標,因此需要獲得一組最佳解,稱為有效解。研究發現,使用進化演算法是在單次模擬運行中尋找多個有效解的高效方法。

- 全面涵蓋這一不斷增長的研究領域
- 小心地介紹每個演算法,並提供範例和深入討論
- 包含許多應用於現實問題的案例,包括工程設計和排程
- 對於對多目標優化和進化演算法知識有限的人士也易於理解

這種理論、演算法和範例的綜合呈現將使從事優化、最佳設計和進化計算領域的工作和研究的人受益。

「Deb 的書內容完整,易讀性極高,涵蓋範圍學術且徹底。我很高興也有責任鼓勵你購買這本書,閱讀它,使用它並享受它。」- David E. Goldberg,伊利諾伊大學香檳分校,美國

**目錄**

前言

序言

序章

多目標優化

經典方法

進化演算法

非精英多目標進化演算法

精英多目標進化演算法

受限多目標進化演算法

多目標進化演算法的突出問題

多目標進化演算法的應用

後記

參考文獻

索引