The Geometry of Physics: An Introduction, 2/e (Paperback)
暫譯: 物理的幾何學:導論,第二版(平裝本)
Theodore Frankel
- 出版商: Cambridge
- 出版日期: 2003-11-24
- 售價: $1,600
- 貴賓價: 9.8 折 $1,568
- 語言: 英文
- 頁數: 694
- 裝訂: Paperback
- ISBN: 0521539277
- ISBN-13: 9780521539272
-
相關分類:
物理學 Physics
無法訂購
買這商品的人也買了...
-
$650$553 -
$980$960 -
$680$537 -
$580$568 -
$560$476 -
$480$379 -
$780$616 -
$780$702 -
$620$484 -
$1,058Software Engineering: A Practitioner's Approach, 6/e
-
$490$382 -
$890$703 -
$780$616 -
$820$648 -
$480$408 -
$650$514 -
$550$468 -
$350$273 -
$350$273 -
$580$458 -
$650$507 -
$890$757 -
$650$514 -
$600$480 -
$720$612
相關主題
商品描述
Description:
This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the deformation tensors of elasticity, soap films, special and general relativity, the Dirac operator and spinors, and gauge fields, including Yang-Mills, the Aharonov-Bohm effect, Berry phase, and instanton winding numbers, quarks, and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space; consequently, the book should be of interest also to mathematics students. Ideal for graduate and advanced undergraduate students of physics, engineering and mathematics as a course text or for self study.
Table of Contents:
Preface; Part I. Manifolds, Tensors and Exterior Forms: 1. Manifolds and vector fields; 2. Tensors and exterior forms; 3. Integration of differential forms; 4. The Lie derivative; 5. The Poincaré lemma and potentials; 6. Holonomic and non-holonomic constraints; Part II. Geometry and Topology: 7. R3 and Minkowski space; 8. The geometry of surfaces in R3; 9. Covariant differentiation and curvature; 10. Geodesics; 11. Relativity, tensors, and curvature; 12. Curvature and topology: Synge’s theorem; 13. Betti numbers and de Rham’s theorem; 14. Harmonic forms; Part III. Lie Groups, Bundles and Chern Forms: 15. Lie groups; 16. Vector bundles in geometry and physics; 17. Fiber bundles, Gauss-Bonnet, and topological quantization; 18. Connections and associated bundles; 19. The Dirac equation; 20. Yang-Mills fields; 21. Betti numbers and covering spaces; 22. Chern forms and homotopy groups; Appendix A. Forms in continuum mechanics; Appendix B. Harmonic chains and Kirchhoff’s circuit laws; Appendix C. Symmetries, quarks, and meson masses; Appendix D. Representations and hyperelastic bodies; Appendix E: Orbits and Morse-Bott theory in compact Lie groups.
商品描述(中文翻譯)
**描述:**
本書提供了外部微分形式、微分幾何、代數與微分拓撲、李群、向量束和Chern形式等部分的實用知識,這些知識對於深入理解古典與現代物理及工程至關重要。書中包括了對分析與流體動力學、電磁學(在平坦和曲面空間中)、熱力學、彈性的變形張量、肥皂膜、特殊與一般相對論、Dirac算子和自旋子,以及規範場的討論,包括Yang-Mills、Aharonov-Bohm效應、Berry相位、瞬子纏繞數、夸克及介子的夸克模型。在討論微分幾何的抽象概念之前,通過對普通空間中表面的研究進行相當廣泛的介紹來發展幾何直覺;因此,本書也應該對數學學生感興趣。非常適合物理、工程和數學的研究生及高年級本科生作為課程教材或自學之用。
**目錄:**
前言;第一部分:流形、張量與外部形式:1. 流形與向量場;2. 張量與外部形式;3. 微分形式的積分;4. 李導數;5. Poincaré引理與勢;6. 全同約束與非全同約束;第二部分:幾何與拓撲:7. R3與閔可夫斯基空間;8. R3中表面的幾何;9. 協變微分與曲率;10. 測地線;11. 相對論、張量與曲率;12. 曲率與拓撲:Synge定理;13. Betti數與de Rham定理;14. 蕭哈尼形式;第三部分:李群、束與Chern形式:15. 李群;16. 幾何與物理中的向量束;17. 纖維束、高斯-博內與拓撲量子化;18. 連接與關聯束;19. Dirac方程;20. Yang-Mills場;21. Betti數與覆蓋空間;22. Chern形式與同倫群;附錄A. 連續介質力學中的形式;附錄B. 蕭哈尼鏈與基爾霍夫電路定律;附錄C. 對稱性、夸克與介子質量;附錄D. 表示與超彈性體;附錄E:緊李群中的軌道與Morse-Bott理論。