Probability, Random Processes, and Statistical Analysis : Applications to Communications , Signal Processing, Queueing Theory and Mathematical Finance (Hardcover)
暫譯: 機率、隨機過程與統計分析:在通訊、信號處理、排隊理論及數學金融中的應用 (精裝本)
Hisashi Kobayashi, Brian L. Mark, William Turin
- 出版商: Camberidge
- 出版日期: 2011-12-15
- 售價: $1,280
- 貴賓價: 9.8 折 $1,254
- 語言: 英文
- 頁數: 812
- 裝訂: Hardcover
- ISBN: 0521895448
- ISBN-13: 9780521895446
-
相關分類:
機率統計學 Probability-and-statistics
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
大話設計模式$620$490 -
ARM 嵌入式系統設計入門$520$468 -
The Quick Python Book, 2/e (Paperback)$1,470$1,397 -
程式設計師的自我修養-連結、載入、程式庫$580$493 -
精通 Python 3 程式設計, 2/e (Programming in Python 3: A Complete Introduction to the Python Language, 2/e)$680$537 -
深入淺出 Python (Head First Python)$780$616 -
精通正規表達式, 3/e (Mastering Regular Expressions, 3/e)$780$616 -
Xilinx FPGA 開發實用教學$580$493 -
Arduino UNO R3 開發板(副廠相容版)附傳輸線$400$380 -
L298N 馬達驅動模組$160$152 -
ASP.NET 學習教材-使用 C#$650$514 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
ASP.NET MVC 5 網站開發美學$780$616 -
告別瀑布,擁抱 Scrum:解析微軟與 Adobe 如何在 30 天內開發出新軟體 (Software in 30 Days: How Agile Managers Beat the Odds, Delight Their Customers, And Leave Competitors In the Dust)$320$250 -
iOS 8 程式設計實戰--205 個快速上手的開發技巧$500$395 -
CSS3 網頁設計範例字典$390$332 -
啊哈!圖解演算法必學基礎$350$298 -
邁向 jQuery 達人的階梯$490$417 -
Raspberry Pi Model A+ 256M$950$903 -
Raspberry Pi 超炫專案與完全實戰 (深入 Raspberry Pi 的全面開發經典) (附101段教學與執行影片/範例程式)$520$411 -
精實開發與看板方法$550$435 -
機率學, 3/e (Yates: Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, 3/e)
$450$441 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
為你自己學 Git$500$425
商品描述
Together with the fundamentals of probability, random processes, and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Ito^ process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum-Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, queueing and loss networks, and are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials, and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.
Table Of Contents
1. Introduction
Part I. Probability, Random Variables and Statistics:
2. Probability
3. Discrete random variables
4. Continuous random variables
5. Functions of random variables and their distributions
6. Fundamentals of statistical analysis
7. Distributions derived from the normal distribution
Part II. Transform Methods, Bounds and Limits:
8. Moment generating function and characteristic function
9. Generating function and Laplace transform
10. Inequalities, bounds and large deviation approximation
11. Convergence of a sequence of random variables, and the limit theorems
Part III. Random Processes:
12. Random process
13. Spectral representation of random processes and time series
14. Poisson process, birth-death process, and renewal process
15. Discrete-time Markov chains
16. Semi-Markov processes and continuous-time Markov chains
17. Random walk, Brownian motion, diffusion and ito^ processes
Part IV. Statistical Inference:
18. Estimation and decision theory
19. Estimation algorithms
Part V. Applications and Advanced Topics:
20. Hidden Markov models and applications
21. Probabilistic models in machine learning
22. Filtering and prediction of random processes
23. Queuing and loss models.
商品描述(中文翻譯)
這本具有洞察力的書籍除了介紹機率、隨機過程和統計分析的基本原理外,還涵蓋了廣泛的進階主題和應用。書中詳細討論了貝葉斯統計與頻率統計、時間序列與頻譜表示、不等式、界限與近似、最大似然估計及期望最大化(EM)演算法、幾何布朗運動和伊藤過程。隱藏馬可夫模型(HMM)、維特比(Viterbi)、BCJR和鮑姆-韋爾奇(Baum-Welch)演算法、機器學習演算法、維納濾波器和卡爾曼濾波器、排隊和損失網路等應用也被詳細探討。這本書對於通訊、信號處理、網路、機器學習、生物資訊學、計量經濟學和數學金融等領域的學生和研究人員將非常有用。隨書附有解答手冊、講義幻燈片、補充材料和MATLAB程式,所有資源均可在線獲得,適合用於課堂教學,也是一個對專業人士非常有價值的參考資料。
目錄
1. 介紹
第一部分:機率、隨機變數與統計:
2. 機率
3. 離散隨機變數
4. 連續隨機變數
5. 隨機變數的函數及其分佈
6. 統計分析的基本原理
7. 從正態分佈衍生的分佈
第二部分:變換方法、界限與極限:
8. 矩生成函數和特徵函數
9. 生成函數和拉普拉斯變換
10. 不等式、界限和大偏差近似
11. 隨機變數序列的收斂及極限定理
第三部分:隨機過程:
12. 隨機過程
13. 隨機過程和時間序列的頻譜表示
14. 泊松過程、出生-死亡過程和更新過程
15. 離散時間馬可夫鏈
16. 半馬可夫過程和連續時間馬可夫鏈
17. 隨機漫步、布朗運動、擴散和伊藤過程
第四部分:統計推斷:
18. 估計與決策理論
19. 估計演算法
第五部分:應用與進階主題:
20. 隱藏馬可夫模型及其應用
21. 機器學習中的機率模型
22. 隨機過程的過濾與預測
23. 排隊與損失模型。
