A Biologist's Guide to Mathematical Modeling in Ecology and Evolution (Hardcover)
暫譯: 生物學家的生態與演化數學建模指南 (精裝版)
Sarah P. Otto, Troy Day
- 出版商: Princeton University
- 出版日期: 2007-03-12
- 售價: $1,350
- 貴賓價: 9.8 折 $1,323
- 語言: 英文
- 頁數: 744
- 裝訂: Hardcover
- ISBN: 0691123446
- ISBN-13: 9780691123448
-
相關分類:
地理資訊系統 Gis
下單後立即進貨 (約5~7天)
相關主題
商品描述
<內容簡介>
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own.
The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction.
Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists.
*A how-to guide for developing new mathematical models in biology
*Provides step-by-step recipes for constructing and analyzing models
*Interesting biological applications
*Explores classical models in ecology and evolution
*Questions at the end of every chapter
*Primers cover important mathematical topics
*Exercises with answers
*Appendixes summarize useful rules
*Labs and advanced material available
<章節目錄>
Preface ix
Chapter 1: Mathematical Modeling in Biology 1
1.1 Introduction 1
1.2 HIV 2
1.3 Models of HIV/AIDS 5
1.4 Concluding Message 14
Chapter 2: How to Construct a Model 17
2.1 Introduction 17
2.2 Formulate the Question 19
2.3 Determine the Basic Ingredients 19
2.4 Qualitatively Describe the Biological System 26
2.5 Quantitatively Describe the Biological System 33
2.6 Analyze the Equations 39
2.7 Checks and Balances 47
2.8 Relate the Results Back to the Question 50
2.9 Concluding Message 51
Chapter 3: Deriving Classic Models in Ecology and Evolutionary Biology 54
3.1 Introduction 54
3.2 Exponential and Logistic Models of Population Growth 54
3.3 Haploid and Diploid Models of Natural Selection 62
3.4 Models of Interactions among Species 72
3.5 Epidemiological Models of Disease Spread 77
3.6 Working Backward--Interpreting Equations in Terms of the Biology 79
3.7 Concluding Message 82
Primer 1: Functions and Approximations 89
P1.1 Functions and Their Forms 89
P1.2 Linear Approximations 96
P1.3 The Taylor Series 100
Chapter 4: Numerical and Graphical Techniques--Developing a Feeling for Your Model 110
4.1 Introduction 110
4.2 Plots of Variables Over Time 111
4.3 Plots of Variables as a Function of the Variables Themselves 124
4.4 Multiple Variables and Phase-Plane Diagrams 133
4.5 Concluding Message 145
Chapter 5: Equilibria and Stability Analyses--One-Variable Models 151
5.1 Introduction 151
5.2 Finding an Equilibrium 152
5.3 Determining Stability 163
5.4 Approximations 176
5.5 Concluding Message 184
Chapter 6: General Solutions and Transformations--One-Variable Models 191
6.1 Introduction 191
6.2 Transformations 192
6.3 Linear Models in Discrete Time 193
6.4 Nonlinear Models in Discrete Time 195
6.5 Linear Models in Continuous Time 198
6.6 Nonlinear Models in Continuous Time 202
6.7 Concluding Message 207
Primer 2: Linear Algebra 214
P2.1 An Introduction to Vectors and Matrices 214
P2.2 Vector and Matrix Addition 219
P2.3 Multiplication by a Scalar 222
P2.4 Multiplication of Vectors and Matrices 224
P2.5 The Trace and Determinant of a Square Matrix 228
P2.6 The Inverse 233
P2.7 Solving Systems of Equations 235
P2.8 The Eigenvalues of a Matrix 237
P2.9 The Eigenvectors of a Matrix 243
Chapter 7: Equilibria and Stability Analyses--Linear Models with Multiple Variables 254
7.1 Introduction 254
7.2 Models with More than One Dynamic Variable 255
7.3 Linear Multivariable Models 260
7.4 Equilibria and Stability for Linear Discrete-Time Models 279
7.5 Concluding Message 289
Chapter 8: Equilibria and Stability Analyses--Nonlinear Models with Multiple Variables 294
8.1 Introduction 294
8.2 Nonlinear Multiple-Variable Models 294
8.3 Equilibria and Stability for Nonlinear Discrete-Time Models 316
8.4 Perturbation Techniques for Approximating Eigenvalues 330
8.5 Concluding Message 337
Chapter 9: General Solutions and Tranformations--Models with Multiple Variables 347
9.1 Introduction 347
9.2 Linear Models Involving Multiple Variables 347
9.3 Nonlinear Models Involving Multiple Variables 365
9.4 Concluding Message 381
Chapter 10: Dynamics of Class-Structured Populations 386
10.1 Introduction 386
10.2 Constructing Class-Structured Models 388
10.3 Analyzing Class-Structured Models 393
10.4 Reproductive Value and Left Eigenvectors 398
10.5 The Effect of Parameters on the Long-Term Growth Rate 400
10.6 Age-Structured Models--The Leslie Matrix 403
10.7 Concluding Message 418
Chapter 11: Techniques for Analyzing Models with Periodic Behavior 423
11.1 Introduction 423
11.2 What Are Periodic Dynamics? 423
11.3 Composite Mappings 425
11.4 Hopf Bifurcations 428
11.5 Constants of Motion 436
11.6 Concluding Message 449
Chapter 12: Evolutionary Invasion Analysis 454
12.1 Introduction 454
12.2 Two Introductory Examples 455
12.3 The General Technique of Evolutionary Invasion Analysis 465
12.4 Determining How the ESS Changes as a Function of Parameters 478
12.5 Evolutionary Invasion Analyses in Class-Structured Populations 485
12.6 Concluding Message 502
Primer 3: Probability Theory 513
P3.1 An Introduction to Probability 513
P3.2 Conditional Probabilities and Bayes' Theorem 518
P3.3 Discrete Probability Distributions 521
P3.4 Continuous Probability Distributions 536
P3.5 The (Insert Your Name Here) Distribution 553
Chapter 13: Probabilistic Models 567
13.1 Introduction 567
13.2 Models of Population Growth 568
13.3 Birth-Death Models 573
13.4 Wright-Fisher Model of Allele Frequency Change 576
13.5 Moran Model of Allele Frequency Change 581
13.6 Cancer Development 584
13.7 Cellular Automata--A Model of Extinction and Recolonization 591
13.8 Looking Backward in Time--Coalescent Theory 594
13.9 Concluding Message 602
Chapter 14: Analyzing Discrete Stochastic Models 608
14.1 Introduction 608
14.2 Two-State Markov Models 608
14.3 Multistate Markov Models 614
14.4 Birth-Death Models 631
14.5 Branching Processes 639
14.6 Concluding Message 644
Chapter 15: Analyzing Continuous Stochastic Models--Diffusion in Time and Space 649
15.1 Introduction 649
15.2 Constructing Diffusion Models 649
15.3 Analyzing the Diffusion Equation with Drift 664
15.4 Modeling Populations in Space Using the Diffusion Equation 684
15.5 Concluding Message 687
Epilogue: The Art of Mathematical Modeling in Biology 692
Appendix 1: Commonly Used Mathematical Rules 695
A1.1 Rules for Algebraic Functions 695
A1.2 Rules for Logarithmic and Exponential Functions 695
A1.3 Some Important Sums 696
A1.4 Some Important Products 696
A1.5 Inequalities 697
Appendix 2: Some Important Rules from Calculus 699
A2.1 Concepts 699
A2.2 Derivatives 701
A2.3 Integrals 703
A2.4 Limits 704
Appendix 3: The Perron-Frobenius Theorem 709
A3.1: Definitions 709
A3.2: The Perron-Frobenius Theorem 710
Appendix 4: Finding Maxima and Minima of Functions 713
A4.1 Functions with One Variable 713
A4.2 Functions with Multiple Variables 714
Appendix 5: Moment-Generating Functions 717
Index of Definitions, Recipes, and Rules 725
General Index 727
商品描述(中文翻譯)
內容簡介
三十年前,生物學家只需對數學和建模有基本的了解即可。然而,今天的情況並非如此。在尋求回答有關生物系統如何運作及隨時間變化的基本問題時,現代生物學家同樣依賴於複雜的數學和基於計算機的模型,與傳統的實地工作並重。在本書中,Sarah Otto 和 Troy Day 為生物學學生提供了解釋模型和構建自己模型所需的工具。
本書從數學建模的基本層面開始,假設讀者具備高中數學和第一年的微積分知識。Otto 和 Day 隨後逐步增加深度和複雜性,從生態學和進化論中的經典模型到更複雜的類別結構和概率模型。作者提供了入門教材和指導性練習,幫助讀者了解更高級的線性代數和概率論主題。通過範例,他們描述了模型如何用於理解如 HIV 的傳播、混沌、國家的年齡結構、物種形成和滅絕等主題。
今天的生態學家和進化生物學家需要足夠的數學訓練,以評估生物模型的力量和限制,並能夠自行發展理論和模型。這本創新的書籍將成為下一代生物學家了解數學模型世界的不可或缺的指南。
* 生物學中新數學模型的開發指南
* 提供構建和分析模型的逐步食譜
* 有趣的生物應用
* 探索生態學和進化論中的經典模型
* 每章結尾都有問題
* 入門教材涵蓋重要的數學主題
* 附有答案的練習
* 附錄總結有用的規則
* 實驗室和進階材料可用
章節目錄
前言 ix
第一章:生物學中的數學建模 1
1.1 介紹 1
1.2 HIV 2
1.3 HIV/AIDS 的模型 5
1.4 結論 14
第二章:如何構建模型 17
2.1 介紹 17
2.2 制定問題 19
2.3 確定基本成分 19
2.4 定性描述生物系統 26
2.5 定量描述生物系統 33
2.6 分析方程式 39
2.7 檢查和平衡 47
2.8 將結果與問題相關聯 50
2.9 結論 51
第三章:推導生態學和進化生物學中的經典模型 54
3.1 介紹 54
3.2 人口增長的指數和邏輯模型 54
3.3 自然選擇的單倍體和二倍體模型 62
3.4 物種間相互作用的模型 72
3.5 疾病傳播的流行病學模型 77
3.6 反向工作——從生物學的角度解釋方程式 79
3.7 結論 82
入門教材 1:函數和近似 89
P1.1 函數及其形式 89
P1.2 線性近似 96
P1.3 泰勒級數 100
第四章:數值和圖形技術——培養對模型的感覺 110
4.1 介紹 110
4.2 隨時間變化的變數圖 111
4.3 變數作為自身函數的圖 124
4.4 多變數和相位平面圖 133
4.5 結論 145
第五章:平衡和穩定性分析——單變數模型 151
5.1 介紹 151
5.2 尋找平衡 152
5.3 確定穩定性 163
5.4 近似 176
5.5 結論 184
第六章:一般解和變換——單變數模型 191
6.1 介紹 191
6.2 變換 192
6.3 離散時間的線性模型 193
6.4 離散時間的非線性模型 195
6.5 持續時間的線性模型 198
6.6 持續時間的非線性模型 202
6.7 結論 207
入門教材 2:線性代數 214
P2.1 向量和矩陣的介紹 214
P2.2 向量和矩陣的加法 219
P2.3 乘以標量 222
P2.4 向量和矩陣的乘法 224
P2.5 方陣的跡和行列式 228
P2.6 逆 233
P2.7 解方程組 235
P2.8 矩陣的特徵值 237
P2.9 矩陣的特徵向量 243
第七章:平衡和穩定性分析——多變數的線性模型 254
7.1 介紹 254
7.2 具有多個動態變數的模型 255
7.3 線性多變數模型 260
7.4 線性離散時間模型的平衡和穩定性 279
7.5 結論 289
第八章:平衡和穩定性分析——多變數的非線性模型 294
8.1 介紹 294
8.2 非線性多變數模型 294
8.3 非線性離散時間模型的平衡和穩定性 316
8.4 近似特徵值的擾動技術 330
8.5 結論 337
第九章:一般解和變換——多變數模型 347
9.1 介紹 347
9.2 涉及多個變數的線性模型 347
9.3 涉及多個變數的非線性模型 365
9.4 結論 381
第十章:類別結構人口的動態 386
10.1 介紹 386
10.2 構建類別結構模型 388
10.3 分析類別結構模型 393
10.4 生殖價值和左特徵向量 398
10.5 參數對長期增長率的影響 400
10.6 年齡結構模型——Leslie 矩陣 403
10.7 結論 418
第十一章:分析具有周期行為的模型的技術 423
11.1 介紹 423
11.2 什麼是周期動力學? 423
11.3 複合映射 425
11.4 Hopf 分岔 428
11.5 運動常數 436
11.6 結論 449
第十二章:進化入侵分析 454
12.1 介紹 454
12.2 兩個入門範例 455
12.3 進化入侵分析的一般技術 465
12.4 確定 ESS 如何隨參數變化 478
12.5 在類別結構人口中的進化入侵分析 485
12.6 結論 502
入門教材 3:概率論 513
P3.1 概率的介紹 513
P3.2 條件概率和貝葉斯定理 518
P3.3 離散概率分佈 521
P3.4 連續概率分佈 536
P3.5 (在此插入您的名字)分佈 553
第十三章:概率模型 567
13.1 介紹 567
13.2 人口增長模型 568
13.3 出生-死亡模型 573
13.4 Wright-Fisher 等位基因頻率變化模型 576
13.5 Moran 等位基因頻率變化模型 581
13.6 癌症發展 584
13.7 細胞自動機——滅絕和重新殖民的模型 591
13.8 向後回顧時間——合併理論 594
13.9 結論 602
第十四章:分析離散隨機模型 608
14.1 介紹 608
14.2 二狀態馬可夫模型 608
14.3 多狀態馬可夫模型 614
14.4 出生-死亡模型 631
14.5 分支過程 639
14.6 結論 644
第十五章:分析連續隨機模型——時間和空間中的擴散 649
15.1 介紹 649
15.2 構建擴散模型 649
15.3 分析帶漂移的擴散方程 664
15.4 使用擴散方程建模空間中的人口 684
15.5 結論 687
後記:生物學中的數學建模藝術 692
附錄 1:常用數學規則 695
A1.1 代數函數的規則 695
A1.2 對數和指數函數的規則 695
A1.3 一些重要的和 696
A1.4 一些重要的乘積 696
A1.5 不等式 697
附錄 2:微積分中的一些重要規則 699
A2.1 概念 699
A2.2 導數 701
A2.3 積分 703
A2.4 極限 704
附錄 3:Perron-Frobenius 定理 709
A3.1:定義 709
A3.2:Perron-Frobenius 定理 710
附錄 4:尋找函數的極大值和極小值 713
A4.1 單變數函數 713
A4.2 多變數函數 714
附錄 5:矩生成函數 717
定義、食譜和規則索引 725
總索引 727