Machine Learning for Physics and Astronomy
Acquaviva, Viviana
- 出版商: Princeton University Press
- 出版日期: 2023-08-15
- 售價: $2,070
- 貴賓價: 9.8 折 $2,029
- 語言: 英文
- 頁數: 280
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0691206414
- ISBN-13: 9780691206417
-
相關分類:
Machine Learning、物理學 Physics
立即出貨(限量) (庫存=1)
買這商品的人也買了...
-
$525The Official Ubuntu Book, 2/e (Paperback)
-
$1,980$1,940 -
$1,490$1,416
相關主題
商品描述
A hands-on introduction to machine learning and its applications to the physical sciences
As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider.
- Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given task
- Each chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key concepts
- Includes a wealth of review questions and quizzes
- Ideal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematics
- Accessible to self-learners with a basic knowledge of linear algebra and calculus
- Slides and assessment questions (available only to instructors)
商品描述(中文翻譯)
一本實踐機器學習並應用於物理科學的入門書籍
隨著物理科學領域的數據規模和複雜性不斷以指數級增長,機器學習正幫助科學家篩選和分析這些信息,同時在量子物理學、天文學、宇宙學等領域推動了令人驚嘆的進展。這本深入的教科書介紹了構建、診斷、優化和部署機器學習方法來解決物理學和天文學研究問題的基礎知識,強調批判性思維和科學方法。《機器學習應用於物理學和天文學》採用了實踐學習的方法,利用真實世界的公開數據以及直接從研究前沿中提取的例子,從從圖像中識別星系形態到在大型強子對撞機模擬中識別標準模型粒子的特徵等方面進行了探索。
- 引導讀者採用數據驅動的問題解決最佳實踐,從初步數據探索和清理到選擇最適合的方法來解決特定任務。
- 每章附有使用Python的Jupyter Notebook工作表,讓學生能夠探索關鍵概念。
- 包含豐富的復習問題和測驗。
- 適合物理學、計算機科學、工程學和應用數學等STEM學科的高年級本科生和早期研究生。
- 適合具備線性代數和微積分基礎知識的自學者。
- 提供幻燈片和評估問題(僅供教師使用)。
作者簡介
Viviana Acquaviva is professor of physics at the New York City College of Technology and the Graduate Center, City University of New York, and the recipient of a PIVOT fellowship to apply AI tools to problems in climate. She was named one of Italy's fifty most inspiring women in technology by InspiringFifty, which recognizes women in STEM who serve as role models for girls around the world.
作者簡介(中文翻譯)
Viviana Acquaviva是紐約市科技學院和紐約市立大學研究生中心的物理學教授,並獲得PIVOT獎學金,將人工智慧工具應用於氣候問題。她被InspiringFifty評選為義大利最具啟發力的五十位科技女性之一,該獎項表彰在科學、技術、工程和數學領域中為女孩們樹立榜樣的女性。