Algebraic Number Theory
暫譯: 代數數論

Richard A. Mollin

  • 出版商: CRC
  • 出版日期: 1999-03-16
  • 售價: $1,880
  • 貴賓價: 9.8$1,842
  • 語言: 英文
  • 頁數: 504
  • 裝訂: Hardcover
  • ISBN: 0849339898
  • ISBN-13: 9780849339899
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

相關主題

商品描述

Description 

  • Engages readers by offering an historical perspective through the lives of mathematicians who played pivotal roles in developing algebraic number theory
  • Explores in detail the direct, practical application of algebraic number theory to cryptography
  • Provides a rich source of exercises on varying levels designed to enhance, test, and challenge the reader's understandingSolutions manual available with qualifying course adoptions

    From its history as an elegant but abstract area of mathematics, algebraic number theory now takes its place as a useful and accessible study with important real-world practicality. Unique among algebraic number theory texts, this important work offers a wealth of applications to cryptography, including factoring, primality-testing, and public-key cryptosystems.

    A follow-up to Dr. Mollin's popular Fundamental Number Theory with Applications, Algebraic Number Theory provides a global approach to the subject that selectively avoids local theory. Instead, it carefully leads the student through each topic from the level of the algebraic integer, to the arithmetic of number fields, to ideal theory, and closes with reciprocity laws. In each chapter the author includes a section on a cryptographic application of the ideas presented, effectively demonstrating the pragmatic side of theory.

    In this way Algebraic Number Theory provides a comprehensible yet thorough treatment of the material. Written for upper-level undergraduate and graduate courses in algebraic number theory, this one-of-a-kind text brings the subject matter to life with historical background and real-world practicality. It easily serves as the basis for a range of courses, from bare-bones algebraic number theory, to a course rich with cryptography applications, to a course using the basic theory to prove Fermat's Last Theorem for regular primes. Its offering of over 430 exercises with odd-numbered solutions provided in the back of the book and, even-numbered solutions available a separate manual makes this the ideal text for both students and instructors.

  •  

    Table of Contents

    Algebraic Numbers
    Origins and Foundations
    Algebraic Numbers and Number Fields
    Discriminants, Norms, and Traces
    Algebraic Integers and Integral Bases
    Factorization and Divisibility
    Applications of Unique Factorization
    Applications to Factoring Using Cubic Integers
    Arithmetic of Number Fields
    Quadratic Fields
    Cyclotomic Fields
    Units in Number Rings
    Geometry of Numbers
    Dirichlet's Unit Theorem
    Application: The Number Field Sieve
    Ideal Theory
    Properties of Ideals
    PID's and UFD's
    Norms of Ideals
    Ideal Classes-The Class Group
    Class Numbers of Quadratic Fields
    Cyclotomic Fields and Kummer's Theorem--Bernoulli Numbers and Irregular Primes
    Cryptography in Quadratic Fields
    Ideal Decomposition in Extension Fields
    Inertia, Ramification, and Splitting
    The Different and Discriminant
    Galois Theory and Decomposition
    The Kronecker-Weber Theorem
    An Application--Primality Testing
    Reciprocity Laws
    Cubic Reciprocity
    The Biquadratic Reciprocity Law
    The Stickelberger Relation
    The Eisenstein Reciprocity Law
    Elliptic Curves, Factoring, and Primality
    Appendices
    Groups, Modules, Rings, Fields, and Matrices
    Sequences and Series
    Galois Theory (An Introduction with Exercises)
    The Greek Alphabet
    Latin Phrases
    Solutions to Odd-Numbered Exercises
    Bibliograph
    List of Symbols
    Index (over 1,700 entries)

    商品描述(中文翻譯)

    **描述**

    - 透過數學家們的生活提供歷史視角,吸引讀者,這些數學家在發展代數數論中扮演了關鍵角色。
    - 詳細探討代數數論在密碼學中的直接實際應用。
    - 提供豐富的練習題,涵蓋不同難度,旨在增強、測試和挑戰讀者的理解。合格課程採用可獲得解答手冊。

    從其作為一個優雅但抽象的數學領域的歷史,代數數論現在已成為一個有用且易於接觸的研究,具有重要的現實實用性。在代數數論的文本中,這部重要作品提供了大量對密碼學的應用,包括因式分解、質數測試和公鑰密碼系統。

    這本書是對 Dr. Mollin 受歡迎的《基本數論及其應用》的後續作品,代數數論提供了一個全球性的主題方法,選擇性地避免地方理論。相反,它仔細引導學生從代數整數的層面,進入數域的算術、理想理論,並以互惠法則作結。在每一章中,作者都包括了一個關於所呈現思想的密碼學應用的部分,有效地展示了理論的實用面。

    以這種方式,代數數論提供了可理解但徹底的材料處理。這本書是為高年級本科生和研究生的代數數論課程而寫,這本獨特的教材以歷史背景和現實實用性使主題生動起來。它輕鬆地作為一系列課程的基礎,從基本的代數數論,到充滿密碼學應用的課程,再到使用基本理論來證明費馬最後定理的課程。它提供了超過430道練習題,書後提供奇數題的解答,偶數題的解答則可在單獨的手冊中獲得,這使得它成為學生和教師的理想教材。

    **目錄**

    - 代數數
    - 起源與基礎
    - 代數數與數域
    - 判別式、範數與跡
    - 代數整數與整數基
    - 因式分解與可除性
    - 獨特因式分解的應用
    - 使用立方整數的因式分解應用
    - 數域的算術
    - 二次域
    - 循環域
    - 數環中的單位
    - 數的幾何
    - 狄利克雷單位定理
    - 應用:數域篩法
    - 理想理論
    - 理想的性質
    - PID 與 UFD
    - 理想的範數
    - 理想類別 - 類群
    - 二次域的類數
    - 循環域與庫默定理 - 伯努利數與不規則質數
    - 二次域中的密碼學
    - 擴展域中的理想分解
    - 惰性、分歧與分裂
    - 不同與判別式
    - 加洛瓦理論與分解
    - 克羅內克-韋伯定理
    - 應用 - 質數測試
    - 互惠法則
    - 立方互惠
    - 二次互惠法則
    - 斯蒂克爾伯格關係
    - 艾森斯坦互惠法則
    - 橢圓曲線、因式分解與質數
    - 附錄
    - 群、模、環、域與矩陣
    - 序列與級數
    - 加洛瓦理論(附練習)
    - 希臘字母
    - 拉丁短語
    - 奇數練習題解答
    - 參考文獻
    - 符號列表
    - 索引(超過1,700個條目)