Algebraic Structures in Natural Language
暫譯: 自然語言中的代數結構

Lappin, Shalom, Bernardy, Jean-Philippe

  • 出版商: CRC
  • 出版日期: 2022-12-23
  • 售價: $3,350
  • 貴賓價: 9.5$3,183
  • 語言: 英文
  • 頁數: 290
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1032066547
  • ISBN-13: 9781032066547
  • 相關分類: 人工智慧DeepLearningText-mining
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Algebraic Structures in Natural Language addresses a central problem in cognitive science concerning the learning procedures through which humans acquire and represent natural language. Until recently algebraic systems have dominated the study of natural language in formal and computational linguistics, AI, and the psychology of language, with linguistic knowledge seen as encoded in formal grammars, model theories, proof theories and other rule-driven devices. Recent work on deep learning has produced an increasingly powerful set of general learning mechanisms which do not apply rule-based algebraic models of representation. The success of deep learning in NLP has led some researchers to question the role of algebraic models in the study of human language acquisition and linguistic representation. Psychologists and cognitive scientists have also been exploring explanations of language evolution and language acquisition that rely on probabilistic methods, social interaction and information theory, rather than on formal models of grammar induction.

This book addresses the learning procedures through which humans acquire natural language, and the way in which they represent its properties. It brings together leading researchers from computational linguistics, psychology, behavioral science and mathematical linguistics to consider the significance of non-algebraic methods for the study of natural language. The text represents a wide spectrum of views, from the claim that algebraic systems are largely irrelevant to the contrary position that non-algebraic learning methods are engineering devices for efficiently identifying the patterns that underlying grammars and semantic models generate for natural language input. There are interesting and important perspectives that fall at intermediate points between these opposing approaches, and they may combine elements of both. It will appeal to researchers and advanced students in each of these fields, as well as to anyone who wants to learn more about the relationship between computational models and natural language.

商品描述(中文翻譯)

《自然語言中的代數結構》探討了認知科學中的一個核心問題,即人類如何學習和表達自然語言的過程。直到最近,代數系統在形式和計算語言學、人工智慧以及語言心理學的自然語言研究中佔據主導地位,語言知識被視為編碼在形式文法、模型理論、證明理論及其他基於規則的裝置中。近期在深度學習方面的研究產生了一套越來越強大的通用學習機制,這些機制並不適用於基於規則的代數表示模型。深度學習在自然語言處理(NLP)中的成功使一些研究人員開始質疑代數模型在研究人類語言習得和語言表達中的角色。心理學家和認知科學家也在探索依賴於概率方法、社會互動和信息理論的語言演化和語言習得的解釋,而不是依賴於形式文法歸納模型。

本書探討了人類習得自然語言的學習過程,以及他們如何表達其特性。它匯集了來自計算語言學、心理學、行為科學和數學語言學的領先研究者,考慮非代數方法在自然語言研究中的重要性。文本代表了廣泛的觀點,從認為代數系統在很大程度上無關緊要的主張,到相反的立場,即非代數學習方法是有效識別基於文法和語義模型為自然語言輸入生成的模式的工程裝置。這些對立方法之間還存在有趣且重要的觀點,它們可能結合了兩者的元素。本書將吸引這些領域的研究人員和高級學生,以及任何想要了解計算模型與自然語言之間關係的人。

作者簡介

Shalom Lappin is a Professor of Computational Linguistics at the University of Gothenburg, Professor of Natural Language Processing at Queen Mary University of London and Emeritus Professor of Computational Linguistics at King's College London. His research focuses on the application of machine learning and probabilistic models to the representation and the acquisition of linguistic knowledge.

Jean-Philippe Bernardy is a researcher at the University of Gothenburg. His main research interest is in interpretable linguistic models, in particular, those built from first principles of algebra, probability and geometry.

作者簡介(中文翻譯)

沙洛姆·拉平是哥德堡大學的計算語言學教授、倫敦女王瑪莉大學的自然語言處理教授,以及倫敦國王學院的名譽計算語言學教授。他的研究專注於機器學習和概率模型在語言知識的表徵和獲取中的應用。

讓-菲利普·伯納迪是哥德堡大學的研究員。他的主要研究興趣在於可解釋的語言模型,特別是那些基於代數、概率和幾何的基本原理構建的模型。