Behavior Analysis with Machine Learning Using R
Ceja, Enrique Garcia
- 出版商: CRC
- 出版日期: 2024-01-29
- 售價: $2,380
- 貴賓價: 9.5 折 $2,261
- 語言: 英文
- 頁數: 400
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1032067055
- ISBN-13: 9781032067056
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Behavior Analysis with Machine Learning Using R introduces machine learning and deep learning concepts and algorithms applied to a diverse set of behavior analysis problems. It focuses on the practical aspects of solving such problems based on data collected from sensors or stored in electronic records. The included examples demonstrate how to perform common data analysis tasks such as: data exploration, visualization, preprocessing, data representation, model training and evaluation. All of this, using the R programming language and real-life behavioral data. Even though the examples focus on behavior analysis tasks, the covered underlying concepts and methods can be applied in any other domain. No prior knowledge in machine learning is assumed. Basic experience with R and basic knowledge in statistics and high school level mathematics are beneficial.
Features:
- Build supervised machine learning models to predict indoor locations based on WiFi signals, recognize physical activities from smartphone sensors and 3D skeleton data, detect hand gestures from accelerometer signals, and so on.
- Program your own ensemble learning methods and use Multi-View Stacking to fuse signals from heterogeneous data sources.
- Use unsupervised learning algorithms to discover criminal behavioral patterns.
- Build deep learning neural networks with TensorFlow and Keras to classify muscle activity from electromyography signals and Convolutional Neural Networks to detect smiles in images.
- Evaluate the performance of your models in traditional and multi-user settings.
- Build anomaly detection models such as Isolation Forests and autoencoders to detect abnormal fish behaviors.
This book is intended for undergraduate/graduate students and researchers from ubiquitous computing, behavioral ecology, psychology, e-health, and other disciplines who want to learn the basics of machine learning and deep learning and for the more experienced individuals who want to apply machine learning to analyze behavioral data.
商品描述(中文翻譯)
《使用 R 進行行為分析的機器學習》介紹了應用於各種行為分析問題的機器學習和深度學習概念及算法。它專注於基於從傳感器收集或存儲在電子記錄中的數據來解決這些問題的實際方面。書中包含的範例展示了如何執行常見的數據分析任務,例如:數據探索、可視化、預處理、數據表示、模型訓練和評估。所有這些都是使用 R 程式語言和真實的行為數據進行的。儘管範例專注於行為分析任務,但所涵蓋的基本概念和方法可以應用於任何其他領域。書中不假設讀者具備機器學習的先前知識。具備 R 的基本經驗以及統計學和高中數學的基本知識將會有所幫助。
特色:
- 建立監督式機器學習模型,以根據 WiFi 信號預測室內位置,從智能手機傳感器和 3D 骨架數據識別身體活動,從加速度計信號檢測手勢等等。
- 編寫自己的集成學習方法,並使用多視角堆疊來融合來自異質數據源的信號。
- 使用非監督式學習算法來發現犯罪行為模式。
- 使用 TensorFlow 和 Keras 建立深度學習神經網絡,以從肌電圖信號中分類肌肉活動,並使用卷積神經網絡來檢測圖像中的微笑。
- 在傳統和多用戶環境中評估模型的性能。
- 建立異常檢測模型,如孤立森林和自編碼器,以檢測異常的魚類行為。
本書適合來自普及計算、行為生態學、心理學、電子健康及其他學科的本科生/研究生和研究人員,旨在學習機器學習和深度學習的基本知識,並適合那些希望應用機器學習分析行為數據的更有經驗的個體。
作者簡介
Enrique is a Data Scientist at Optimeering. He was previously a Researcher at SINTEF, Norway. He also worked as a PostDoc at the University of Oslo. For the last 11 years, he has been conducting research on behavior analysis using machine learning. Feel free to contact him for any questions, comments, and feedback.
e-mail: e.g.mx [at] ieee.org
twitter: https: //twitter.com/e_g_mx
website: http: //www.enriquegc.com
作者簡介(中文翻譯)
Enrique 是 Optimeering 的數據科學家。他之前在挪威的 SINTEF 擔任研究員,並曾在奧斯陸大學擔任博士後研究員。在過去的 11 年中,他一直在使用機器學習進行行為分析的研究。如有任何問題、意見或反饋,歡迎隨時聯繫他。
電子郵件:e.g.mx [at] ieee.org
推特:https://twitter.com/e_g_mx
網站:http://www.enriquegc.com