The Effect: An Introduction to Research Design and Causality (Paperback)
Huntington-Klein, Nick
- 出版商: CRC
- 出版日期: 2022-01-05
- 售價: $1,600
- 貴賓價: 9.5 折 $1,520
- 語言: 英文
- 頁數: 600
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1032125780
- ISBN-13: 9781032125787
-
相關分類:
R 語言
-
其他版本:
The Effect: An Introduction to Research Design and Causality
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,020$1,919 -
$1,000$790 -
$1,715Introduction to Probability, 2/e (Hardcover)
-
$690$545 -
$454聯邦學習
-
$662機器視覺之 TensorFlow 2 入門原理與應用實戰
-
$403機器學習中的概率統計:Python 語言描述
-
$520$411 -
$720$569 -
$352從零開始 機器學習的數學原理和算法實踐
-
$600$468 -
$880$695 -
$680$537 -
$1,200$1,020 -
$1,850$1,813 -
$834$792 -
$650$507 -
$580$435 -
$2,140$2,033 -
$2,641$2,502 -
$780$616 -
$680$537 -
$600$570 -
$708$673 -
$403Llama 大模型實踐指南
相關主題
商品描述
The Effect: An Introduction to Research Design and Causality is about research design, specifically concerning research that uses observational data to make a causal inference. It is separated into two halves, each with different approaches to that subject. The first half goes through the concepts of causality, with very little in the way of estimation. It introduces the concept of identification thoroughly and clearly and discusses it as a process of trying to isolate variation that has a causal interpretation. Subjects include heavy emphasis on data-generating processes and causal diagrams.
Concepts are demonstrated with a heavy emphasis on graphical intuition and the question of what we do to data. When we "add a control variable" what does that actually do?
Key Features:
- - Extensive code examples in R, Stata, and Python
- - Chapters on overlooked topics in econometrics classes: heterogeneous treatment effects, simulation and power analysis, new cutting-edge methods, and uncomfortable ignored assumptions
- - An easy-to-read conversational tone
- - Up-to-date coverage of methods with fast-moving literatures like difference-in-differences
商品描述(中文翻譯)
《The Effect: An Introduction to Research Design and Causality》是一本關於研究設計的書籍,專門探討使用觀察數據進行因果推論的研究。該書分為兩個部分,每個部分都採用不同的方法來處理這個主題。第一部分介紹了因果性的概念,並很少涉及估計方法。它詳細而清晰地介紹了鑑別的概念,並將其視為一個試圖分離具有因果解釋的變異性的過程。主題包括對數據生成過程和因果圖的重點強調。
該書通過大量強調圖形直觀性和我們對數據的處理方式來演示概念。當我們「添加一個控制變量」時,這實際上是做了什麼?
主要特點包括:
- 在R、Stata和Python中提供大量的代碼示例
- 關於經濟計量學課程中被忽視的主題的章節:異質處理效應、模擬和功效分析、新的尖端方法和被忽視的不舒服假設
- 輕鬆閱讀的對話語氣
- 更新的方法覆蓋了快速發展的文獻,如差異中的差異方法
作者簡介
Nick Huntington-Klein is a professor of economics at Seattle University specializing in the study of the education system and applied econometrics. He is known as someone who can clearly explain complex topics in econometrics, and his teaching materials have been shared online tens of thousands of times. To his great anguish, his toddler daughter refuses to learn about sampling variation and would rather listen to that one Moana song on repeat.
作者簡介(中文翻譯)
Nick Huntington-Klein是西雅圖大學的經濟學教授,專攻教育體系和應用計量經濟學的研究。他以能清晰解釋計量經濟學中複雜主題而聞名,他的教材在線上分享了數萬次。令他非常苦惱的是,他的幼兒女兒拒絕學習抽樣變異,寧願一直聽那首《莫阿娜》的歌曲。