Reliable Machine Learning: Applying Sre Principles to ML in Production (Paperback)
暫譯: 可靠的機器學習:將 SRE 原則應用於生產中的 ML

Chen, Cathy, Murphy, Niall, Parisa, Kranti

  • 出版商: O'Reilly
  • 出版日期: 2022-10-25
  • 定價: $2,730
  • 售價: 9.5$2,594
  • 語言: 英文
  • 頁數: 408
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098106229
  • ISBN-13: 9781098106225
  • 相關分類: Machine Learning
  • 立即出貨 (庫存 < 4)

買這商品的人也買了...

相關主題

商品描述

Whether you're part of a small startup or a multinational corporation, this practical book shows data scientists, software and site reliability engineers, product managers, and business owners how to run ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization.

By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guest authors show you how to run an efficient and reliable ML system. Whether you want to increase revenue, optimize decision making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind.

You'll examine:

  • What ML is: how it functions and what it relies on
  • Conceptual frameworks for understanding how ML loops work
  • Effective productionization, and how it can be made easily monitorable, deployable, and operable
  • Why ML systems make production troubleshooting more difficult, and how to get around them
  • How ML, product, and production teams can communicate effectively

商品描述(中文翻譯)

無論您是小型創業公司的一部分還是跨國企業,這本實用的書籍向數據科學家、軟體和網站可靠性工程師、產品經理以及商業擁有者展示如何在您的組織內可靠、有效且負責任地運行機器學習(ML)。您將深入了解從如何在生產環境中進行模型監控到如何在產品組織中運行一個調校良好的模型開發團隊的所有內容。

通過將網站可靠性工程(SRE)的思維應用於機器學習,作者及工程專業人士Cathy Chen、Kranti Parisa、Niall Richard Murphy、D. Sculley、Todd Underwood以及特邀作者將向您展示如何運行一個高效且可靠的機器學習系統。無論您想要增加收入、優化決策、解決問題,還是理解並影響客戶行為,您都將學會如何在考慮整體情況的同時執行日常的機器學習任務。

您將探討:

- 機器學習(ML)是什麼:它如何運作以及依賴於什麼
- 理解機器學習迴圈運作的概念框架
- 有效的生產化,以及如何使其易於監控、部署和操作
- 為什麼機器學習系統使生產故障排除變得更加困難,以及如何克服這些困難
- 機器學習、產品和生產團隊如何有效溝通