Essential Math for AI: Next-Level Mathematics for Efficient and Successful AI Systems (Paperback)
暫譯: AI 必備數學:高效成功的 AI 系統所需的進階數學

Nelson, Hala

  • 出版商: O'Reilly
  • 出版日期: 2023-02-14
  • 定價: $2,820
  • 售價: 9.5$2,679
  • 語言: 英文
  • 頁數: 602
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1098107632
  • ISBN-13: 9781098107635
  • 相關分類: 人工智慧
  • 立即出貨 (庫存 < 4)

買這商品的人也買了...

相關主題

商品描述

Many industries are eager to integrate AI and data-driven technologies into their systems and operations. But to build truly successful AI systems, you need a firm grasp of the underlying mathematics. This comprehensive guide bridges the gap in presentation between the potential and applications of AI and its relevant mathematical foundations. 
In an immersive and conversational style, the book surveys the mathematics necessary to thrive in the AI field, focusing on real-world applications and state-of-the-art models, rather than on dense academic theory. You'll explore topics such as regression, neural networks, convolution, optimization, probability, graphs, random walks, Markov processes, differential equations, and more within an exclusive AI context geared toward computer vision, natural language processing, generative models, reinforcement learning, operations research, and automated systems. With a broad audience in mind, including engineers, data scientists, mathematicians, scientists, and people early in their careers, the book helps build a solid foundation for success in the AI and math fields. 
You'll be able to:
 

- Comfortably speak the languages of AI, machine learning, data science, and mathematics
- Unify machine learning models and natural language models under one mathematical structure
- Handle graph and network data with ease
- Explore real data, visualize space transformations, reduce dimensions, and process images
- Decide on which models to use for different data-driven projects
- Explore the various implications and limitations of AI

商品描述(中文翻譯)

許多行業渴望將人工智慧(AI)和數據驅動技術整合到他們的系統和操作中。然而,要建立真正成功的AI系統,您需要對其背後的數學有堅實的掌握。本書是一部全面的指南,彌補了AI的潛力與應用及其相關數學基礎之間的展示差距。

本書以沉浸式和對話式的風格,調查了在AI領域中蓬勃發展所需的數學,重點關注現實世界的應用和最先進的模型,而非密集的學術理論。您將探索回歸、神經網絡、卷積、優化、概率、圖形、隨機漫步、馬可夫過程、微分方程等主題,這些都在專門針對計算機視覺、自然語言處理、生成模型、強化學習、運籌學和自動化系統的AI背景下進行。考慮到廣泛的受眾,包括工程師、數據科學家、數學家、科學家以及職業生涯初期的人士,本書有助於為在AI和數學領域的成功奠定堅實的基礎。

您將能夠:

- 自信地使用AI、機器學習、數據科學和數學的語言
- 將機器學習模型和自然語言模型統一在一個數學結構下
- 輕鬆處理圖形和網絡數據
- 探索真實數據,視覺化空間變換,降維和處理圖像
- 決定在不同的數據驅動項目中使用哪些模型
- 探索AI的各種影響和限制