Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction (Paperback)
暫譯: 大規模推斷:經驗貝葉斯方法於估計、檢驗與預測的應用(平裝本)

Bradley Efron

買這商品的人也買了...

相關主題

商品描述

We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing, and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.

商品描述(中文翻譯)

我們生活在一個統計推斷的新時代,現代科學技術如微陣列和功能性磁共振成像(fMRI)設備,常常產生成千上萬,甚至數百萬個平行數據集,每個數據集都有其自身的估計或檢驗問題。同時處理成千上萬的問題,不僅僅是重複應用傳統方法。採用經驗貝葉斯方法,Bootstrap 的發明者 Bradley Efron 展示了如何在問題之間累積信息,這種方式結合了貝葉斯和頻率派的思想。在這個框架中,估計、檢驗和預測相互融合,為新方法學的增強能力提供了機會。然而,也出現了新的困難,容易導致錯誤的推斷。本書仔細探討了大規模統計推斷的前景與陷阱,特別關注假發現率,這是新統計技術中最成功的一種。重點在於技術發展背後的推斷思想,並通過大量真實案例進行說明。