Power Management Techniques for Integrated Circuit Design (Hardcover)

Ke-Horng Chen

買這商品的人也買了...

商品描述

 

<內容簡介>

 

This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption.

*A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management
*Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes
*Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience
*Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors’ manuals, and program downloads

<章節目錄>

 

About the Author xii

Preface xiii

Acknowledgments xv

1 Introduction 1

1.1 Moore’s Law 1

1.2 Technology Process Impact: Power Management IC from 0.5 micro-meter to 28 nano-meter 1

1.2.1 MOSFET Structure 1

1.2.2 Scaling Effects 7

1.2.3 Leakage Power Dissipation 9

1.3 Challenge of Power Management IC in Advanced Technological Products 14

1.3.1 Multi-Vth Technology 14

1.3.2 Performance Boosters 15

1.3.3 Layout-Dependent Proximity Effects 19

1.3.4 Impacts on Circuit Design 20

1.4 Basic Definition Principles in Power Management Module 22

1.4.1 Load Regulation 22

1.4.2 Transient Voltage Variations 23

1.4.3 Conduction Loss and Switching Loss 24

1.4.4 Power Conversion Efficiency 25

References 25

2 Design of Low Dropout (LDO) Regulators 28

2.1 Basic LDO Architecture 29

2.1.1 Types of Pass Device 31

2.2 Compensation Skills 34

2.2.1 Pole Distribution 34

2.2.2 Zero Distribution and Right-Half-Plane (RHP) Zero 40

2.3 Design Consideration for LDO Regulators 42

2.3.1 Dropout Voltage 43

2.3.2 Efficiency 44

2.3.3 Line/Load Regulation 45

2.3.4 Transient Output Voltage Variation Caused by Sudden Load Current Change 46

2.4 Analog-LDO Regulators 50

2.4.1 Characteristics of Dominant-Pole Compensation 50

2.4.2 Characteristics of C-free Structure 56

2.4.3 Design of Low-Voltage C-free LDO Regulator 62

2.4.4 Alleviating Minimum Load Current Constraint through the Current Feedback Compensation (CFC) Technique in the Multi-stage C-free LDO Regulator 66

2.4.5 Multi-stage LDO Regulator with Feedforward Path and Dynamic Gain Adjustment (DGA) 75

2.5 Design Guidelines for LDO Regulators 79

2.5.1 Simulation Tips and Analyses 81

2.5.2 Technique for Breaking the Loop in AC Analysis Simulation 82

2.5.3 Example of the Simulation Results of the LDO Regulator with Dominant-Pole Compensation 85

2.6 Digital-LDO (D-LDO) Design 93

2.6.1 Basic D-LDO 94

2.6.2 D-LDO with Lattice Asynchronous Self-Timed Control 96

2.6.3 Dynamic Voltage Scaling (DVS) 100

2.7 Switchable Digital/Analog-LDO (D/A-LDO) Regulator with Analog DVS Technique 110

2.7.1 ADVS Technique 110

2.7.2 Switchable D/A-LDO Regulator 113

References 120

3 Design of Switching Power Regulators 122

3.1 Basic Concept 122

3.2 Overview of the Control Method and Operation Principle 125

3.3 Small Signal Modeling and Compensation Techniques in SWR 131

3.3.1 Small Signal Modeling of Voltage-Mode SWR 131

3.3.2 Small Signal Modeling of the Closed-Loop Voltage-Mode SWR 135

3.3.3 Small Signal Modeling of Current-Mode SWR 150

References 169

4 Ripple-Based Control Technique Part I 170

4.1 Basic Topology of Ripple-Based Control 171

4.1.1 Hysteretic Control 173

4.1.2 On-Time Control 176

4.1.3 Off-Time Control 179

4.1.4 Constant Frequency with Peak Voltage Control and Constant Frequency with Valley Voltage Control 182

4.1.5 Summary of Topology of Ripple-Based Control 183

4.2 Stability Criterion of On-Time Controlled Buck Converter 185

4.2.1 Derivation of the Stability Criterion 185

4.2.2 Selection of Output Capacitor 197

4.3 Design Techniques When Using MLCC with a Small Value of RESR 201

4.3.1 Use of Additional Ramp Signal 202

4.3.2 Use of Additional Current Feedback Path 204

4.3.3 Comparison of On-Time Control with an Additional Current Feedback Path 254

4.3.4 Ripple-Reshaping Technique to Compensate a Small Value of RESR 256

4.3.5 Experimental Result of Ripple-Reshaped Function 262

References 269

5 Ripple-Based Control Technique Part II 270

5.1 Design Techniques for Enhancing Voltage Regulation Performance 270

5.1.1 Accuracy in DC Voltage Regulation 270

5.1.2 V2 Structure for Ripple-Based Control 271

5.1.3 V2 On-Time Control with an Additional Ramp or Current Feedback Path 275

5.1.4 Compensator for V2 Structure with Small RESR 277

5.1.5 Ripple-Based Control with Quadratic Differential and Integration Technique if Small RESR is Used 283

5.1.6 Robust Ripple Regulator (R3) 294

5.2 Analysis of Switching Frequency Variation to Reduce Electromagnetic Interference 297

5.2.1 Improvement of Noise Immunity of Feedback Signal 298

5.2.2 Bypassing Path to Filter the High-Frequency Noise of the Feedback Signal 299

5.2.3 Technique of PLL Modulator 302

5.2.4 Full Analysis of Frequency Variation under Different vIN, vOUT, and iLoad 304

5.2.5 Adaptive On-Time Controller for Pseudo-Constant fSW 313

5.3 Optimum On-Time Controller for Pseudo-Constant fSW 321

5.3.1 Algorithm for Optimum On-Time Control 322

5.3.2 Type-I Optimum On-Time Controller with Equivalent VIN and VOUT,eq 323

5.3.3 Type-II Optimum On-Time Controller with Equivalent VDUTY 331

5.3.4 Frequency Clamper 333

5.3.5 Comparison of Different On-Time Controllers 333

5.3.6 Simulation Result of Optimum On-Time Controller 335

5.3.7 Experimental Result of Optimum On-Time Controller 335

References 343

6 Single-Inductor Multiple-Output (SIMO) Converter 345

6.1 Basic Topology of SIMO Converters 345

6.1.1 Architecture 345

6.1.2 Cross Regulation 347

6.2 Applications of SIMO Converters 348

6.2.1 System-on-Chip 348

6.2.2 Portable Electronics Systems 350

6.3 Design Guidelines of SIMO Converters 351

6.3.1 Energy Delivery Paths 351

6.3.2 Classifications of Control Methods 359

6.3.3 Design Goals 363

6.4 SIMO Converter Techniques for Soc 364

6.4.1 Superposition Theorem in Inductor Current Control 364

6.4.2 Dual-Mode Energy Delivery Methodology 366

6.4.3 Energy-Mode Transition 367

6.4.4 Automatic Energy Bypass 371

6.4.5 Elimination of Transient Cross Regulation 372

6.4.6 Circuit Implementations 376

6.4.7 Experimental Results 387

6.5 SIMO Converter Techniques for Tablets 397

6.5.1 Output Independent Gate Drive Control in SIMO Converter 397

6.5.2 CCM/GM Relative Skip Energy Control in SIMO Converter 405

6.5.3 Bidirectional Dynamic Slope Compensation in SIMO Converter 415

6.5.4 Circuit Implementations 420

6.5.5 Experimental Results 427

References 441

7 Switching-Based Battery Charger 443

7.1 Introduction 443

7.1.1 Pure Charge State 447

7.1.2 Direct Supply State 448

7.1.3 Plug Off State 448

7.1.4 CAS State 448

7.2 Small Signal Analysis of Switching-Based Battery Charger 449

7.3 Closed-Loop Equivalent Model 454

7.4 Simulation with PSIM 461

7.5 Turbo-boost Charger 465

7.6 Influence of Built-In Resistance in the Charger System 470

7.7 Design Example: Continuous Built-In Resistance Detection 472

7.7.1 CBIRD Operation 473

7.7.2 CBIRD Circuit Implementation 476

7.7.3 Experimental Results 480

References 482

8 Energy-Harvesting Systems 483

8.1 Introduction to Energy-Harvesting Systems 483

8.2 Energy-Harvesting Sources 486

8.2.1 Vibration Electromagnetic Transducers 487

8.2.2 Piezoelectric Generator 490

8.2.3 Electrostatic Energy Generator 491

8.2.4 Wind-Powered Energy Generator 492

8.2.5 Thermoelectric Generator 494

8.2.6 Solar Cells 496

8.2.7 Magnetic Coil 498

8.2.8 RF/Wireless 501

8.3 Energy-Harvesting Circuits 502

8.3.1 Basic Concept of Energy-Harvesting Circuits 502

8.3.2 AC Source Energy-Harvesting Circuits 505

8.3.3 DC-Source Energy-Harvesting Circuits 511

8.4 Maximum Power Point Tracking 514

8.4.1 Basic Concept of Maximum Power Point Tracking 514

8.4.2 Impedance Matching 515

8.4.3 Resistor Emulation 516

8.4.4 MPPT Method 518

References 523

Index 527

 

商品描述(中文翻譯)

內容簡介

本書的開始假設能源需求正在引導科學家朝著更環保的能源管理方法發展,因此高度集成的功率控制IC(集成電路/晶片)在進一步降低能源消耗方面需求越來越大。

*對於處理日益普及的集成低功率管理需求的IC設計師來說,這是一本及時且全面的參考指南。
*包括新的主題,如LED照明、快速瞬態響應、DVS跟踪和先進技術節點的設計。
*領先的作者(Chen)是功率管理IC設計領域的活躍且著名的貢獻者,並具有豐富的行業經驗。
*附帶的網站包括帶有書籍插圖的演示文件、講義、模擬電路、解決方案手冊、教師手冊和程序下載。

章節目錄

關於作者 xii

前言 xiii

致謝 xv

1 引言 1

1.1 魯爾夫定律 1

1.2 技術過程的影響:從0.5微米到28納米的功率管理IC 1

1.2.1 MOSFET結構 1

1.2.2 縮放效應 7

1.2.3 漏電功耗 9

1.3 先進技術產品中的功率管理IC挑戰 14

1.3.1 多閥門技術 14

1.3.2 性能增強器 15

1.3.3 佈局相依性接近效應 19

1.3.4 對電路設計的影響 20

1.4 功率管理模塊的基本定義原則 22

1.4.1 負載調節 22

1.4.2 瞬態電壓變化 23

1.4.3 導通損耗和開關損耗 24

1.4.4 功率轉換效率 25

參考文獻 25

2 低壓差(LDO)穩壓器的設計 28

2.1 基本LDO架構 29

2.1.1 通過器件的類型 31

2.2 補償技巧 34

2.2.1 極點分佈 34

2.2.2 零點分佈和右半平面(RHP)零點 40

2.3 LDO穩壓器的設計考慮因素 42

2.3.1 輸出壓降 43

2.3.2 效率 44

2.3.3 線路/負載調節 45

2.3.4 突然負載電流變化引起的瞬態輸出電壓變化 46

2.4 模擬LDO穩壓器 50

2.4.1 主導極點補償的特性 50

2.4.2 C-free結構的特性 56

2.4.3 低電壓C-free LDO穩壓器的設計 62

2.4.4 通過多級C-free LDO穩壓器中的電流反饋補償(CFC)技術減輕最小負載電流限制 66

2.4.5 具有前饋路徑和動態增益調整(DGA)的多級LDO穩壓器 75

2.5 LDO穩壓器的設計指南 79

2.5.1 模擬