Fundamental Statistical Inference : A Computational Approach (Hardcover)
暫譯: 基本統計推論:計算方法導向 (精裝版)
Marc S. Paolella
- 出版商: Wiley
- 出版日期: 2018-09-04
- 售價: $1,680
- 貴賓價: 9.8 折 $1,646
- 語言: 英文
- 頁數: 584
- 裝訂: Hardcover
- ISBN: 1119417864
- ISBN-13: 9781119417866
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,138Uncertainty in Artificial Intelligence (UAI): Proceednigs of the 17th Conference (Paperback)
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback)
-
$800$632 -
$1,250$1,250 -
$360$281 -
$1,200$1,140 -
$1,646Foundations of Linear and Generalized Linear Models (Hardcover)
-
$450$356 -
$450$356 -
$650$507 -
$500$390 -
$650$553 -
$520$411 -
$780$616 -
$450$351 -
$600$468 -
$560$442 -
$500$395 -
$680$537 -
$1,200$948 -
$680$578 -
$1,900$1,805 -
$780$608 -
$600$468 -
$650$585
相關主題
商品描述
A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field
This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided.
The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution.
Presented in three parts—Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics—Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.
商品描述(中文翻譯)
一種實務導向的統計推論方法,針對這個不斷發展的領域中的最新進展
這本清晰易懂的書籍適合初學的研究生,提供了一個實用且詳細的統計推論領域的介紹,包含結果的完整推導、討論以及用於計算的MATLAB程式。它強調材料的相關性、直覺以及針對非常現代的統計推論的討論。除了與數學統計相關的經典主題外,還包括對於信賴區間計算的(單一和雙重)自助法的直觀介紹、收縮估計、尾部(最大矩)估計,以及除了最大似然法以外的各種點估計方法,包括特徵函數的使用和間接推論。所有方法的實務範例均有提供。與正態分佈的離散混合相關的估計問題及其解決方案也有詳細的發展。全書強調非高斯分佈,包括穩定帕累托分佈的處理細節以及非中心Student's t的快速計算。整個章節專門討論優化,包括基於Hessian的方法的發展,以及不需要連續性的啟發式/遺傳算法,並提供MATLAB程式碼。
本書包含理論和非技術性討論,並對文獻進行了大量參考,強調替代的、更現代的方法。最近有關假設檢定和p值在模型選擇中的誤用的文獻也有討論,並強調替代的模型選擇方法,儘管對於分佈假設的假設檢定也有詳細的涵蓋,特別是對於正態分佈。
本書分為三個部分——統計學的基本概念;進一步的統計學基本概念;以及附加主題——《基本統計推論:計算方法》提供了全面的章節,內容包括:引入點估計和區間估計;擬合優度和假設檢定;似然;數值優化;點估計方法;Q-Q圖和分佈檢測;無偏點估計和偏差減少;解析區間估計;在重尾情境下的推論;間接推論法;以及作為附錄的概率論基本概念回顧,後者使本書自成體系,並提供一些進階主題的材料,如鞍點近似、金融中的期望虧損、穩定帕累托分佈的計算,以及收斂定理和證明。