Elementary Linear Algebra, 12/e (AE-Paperback)
暫譯: 初等線性代數,第12版 (AE-平裝本)

Howard Anton , Chris Rorres , Anton Kaul

買這商品的人也買了...

相關主題

商品描述

本書序言

• New Application Section - A new section on the mathematics of facial recognition has been added to Chapter 10.
• Earlier Linear Transformations - Selected material on linear transformations that was covered later in the previous edition has been moved to Chapter 1 to provide a more complete early introduction to the topic. Specifically, some of the material in Sections 4.10 and 4.11 of the previous edition was extracted to form the new Section 1.9, and the remaining material is now in Section 8.6.
• New Section 4.3 Devoted to Spanning Sets - Section 4.2 of the previous edition dealt with both subspaces and spanning sets. Classroom experience has suggested that too many concepts were being introduced at once, so we have slowed down the pace and split off the material on spanning sets to create a new Section 4.3.
• New Examples - New examples have been added, where needed, to support the exercise sets.
• New Exercises - New exercises have been added with special attention to the expanded early introduction to linear transformations.

本書特色

• Interrelationships Among Concepts - One of our main pedagogical goals is to convey to the student that linear algebra is not a collection of isolated definitions and techniques, but is rather a cohesive subject with interrelated ideas. One way in which we do this is by using a crescendo of theorems labeled "Equivalent Statements" that continually revisit relationships among systems of equations, matrices, determinants, vectors, linear transformations, and eigenvalues. To get a general sense of this pedagogical technique see Theorems 1.5.3, 1.6.4, 2.3.8, 4.9.8, 5.1.5, 6.4.5, and 8.2.4.
• Smooth Transition to Abstraction - Because the transition from Euclidean spaces to general vector spaces is difficult for many students, considerable effort is devoted to explaining the purpose of abstraction and helping the student .to "visualize" abstract ideas by drawing analogies to familiar geometric ideas.
• Mathematical Precision - We try to be as mathematically precise as is reasonable for students at this level. But we recognize that mathematical precision is something to be learned, so proofs are presented in a patient style that is tailored for beginners:
• Suitability for a Diverse Audience - The text is designed to serve the needs of students in engineering, computer science, biology, physics, business, and economics, as well as those majoring in mathematics.
• Historical Notes - We feel that it is important to give students a sense of mathematical history and to convey that real people created the mathematical theorems and equations they are studying. Accordingly, we have included numerous "Historical Notes" that put various topics in historical perspective.

商品描述(中文翻譯)

本書序言

• 新增應用章節 - 第10章新增了一個有關臉部識別數學的新章節。

• 早期線性變換 - 先前版本中較晚涵蓋的線性變換相關材料已移至第1章,以提供更完整的早期介紹。具體而言,先前版本第4.10和4.11節中的部分材料被提取形成新的第1.9節,其餘材料現在位於第8.6節。

• 新增第4.3節專注於生成集 - 先前版本的第4.2節同時處理子空間和生成集。課堂經驗表明,一次引入過多概念,因此我們放慢了進度,將有關生成集的材料分離出來,創建新的第4.3節。

• 新增範例 - 在需要的地方新增了範例,以支持練習題集。

• 新增練習題 - 新增了練習題,特別關注擴展的線性變換早期介紹。

本書特色

• 概念之間的相互關係 - 我們的主要教學目標之一是向學生傳達線性代數不是一系列孤立的定義和技術,而是一個具有相互關聯思想的整體學科。我們的一種方法是使用標記為「等價陳述」的定理漸進式地重訪方程組、矩陣、行列式、向量、線性變換和特徵值之間的關係。要了解這種教學技術的一般感覺,請參見定理1.5.3、1.6.4、2.3.8、4.9.8、5.1.5、6.4.5和8.2.4。

• 平滑過渡到抽象 - 由於從歐幾里得空間過渡到一般向量空間對許多學生來說是困難的,因此我們花了相當多的精力來解釋抽象的目的,並幫助學生「可視化」抽象概念,通過類比熟悉的幾何概念。

• 數學精確性 - 我們努力在這個水平的學生中保持合理的數學精確性。但我們認識到數學精確性是需要學習的,因此證明以耐心的風格呈現,適合初學者:

• 適合多元化的讀者 - 本書旨在滿足工程、計算機科學、生物學、物理學、商業和經濟學等領域學生的需求,以及數學專業的學生。

• 歷史註解 - 我們認為讓學生了解數學歷史並傳達真實的人創造了他們所學習的數學定理和方程式是很重要的。因此,我們包含了許多「歷史註解」,將各種主題放在歷史背景中。

目錄大綱

1 Systems of Linear Equations and Matrices
2 Determinants
3 Euclidean Vector Spaces
4 General Vector Spaces
5 Eigenvalues and Eigenvectors
6 Inner Product Spaces
7 Diagonalization and Quadratic Forms
8 General Linear Transformations
9 Numerical Methods
10 Applications of Linear Algebra
Supplemental Online Topics
• Linear Programming - A Geometric Approach
• Linear Programming - Basic Concepts
• Linear Programming - The Simplex Method
• Vectors in Plane Geometry
• Equilibrium of Rigid Bodies
• The Assignment Problem
• The Determinant Function
• Leontief Economic Models
Appendix A Working with Proofs
Appendix B Complex Numbers
Answers to Exercises 

目錄大綱(中文翻譯)

1 Systems of Linear Equations and Matrices

2 Determinants

3 Euclidean Vector Spaces

4 General Vector Spaces

5 Eigenvalues and Eigenvectors

6 Inner Product Spaces

7 Diagonalization and Quadratic Forms

8 General Linear Transformations

9 Numerical Methods

10 Applications of Linear Algebra

Supplemental Online Topics

• Linear Programming - A Geometric Approach

• Linear Programming - Basic Concepts

• Linear Programming - The Simplex Method

• Vectors in Plane Geometry

• Equilibrium of Rigid Bodies

• The Assignment Problem

• The Determinant Function

• Leontief Economic Models

Appendix A Working with Proofs

Appendix B Complex Numbers

Answers to Exercises