Federated Learning for Future Intelligent Wireless Networks
暫譯: 聯邦學習在未來智慧無線網路中的應用

Sun, Yao, You, Chaoqun, Feng, Gang

  • 出版商: Wiley
  • 出版日期: 2023-12-27
  • 售價: $4,970
  • 貴賓價: 9.5$4,722
  • 語言: 英文
  • 頁數: 336
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1119913896
  • ISBN-13: 9781119913894
  • 相關分類: Wireless-networks
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Explore the concepts, algorithms, and applications underlying federated learning

In Federated Learning for Future Intelligent Wireless Networks, a team of distinguished researchers delivers a robust and insightful collection of resources covering the foundational concepts and algorithms powering federated learning, as well as explanations of how they can be used in wireless communication systems. The editors have included works that examine how communication resource provision affects federated learning performance, accuracy, convergence, scalability, and security and privacy.

In the book, readers will explore a wide range of topics that show how federated learning algorithms, concepts, and design and optimization issues that apply to wireless communications. Readers will also find:

  • A thorough introduction to the fundamental concepts and algorithms of federated learning, including horizontal, vertical, and hybrid FL
  • Comprehensive explorations of wireless communication network design and optimization for federated learning
  • Practical discussions of novel federated learning algorithms and frameworks for future wireless networks
  • Expansive case studies in edge intelligence, autonomous driving, IoT, MEC, blockchain, and content caching and distribution

Perfect for electrical and computer science engineers, researchers, professors, and postgraduate students with an interest in machine learning, Federated Learning for Future Intelligent Wireless Networks will also benefit regulators and institutional actors responsible for overseeing and making policy in the area of artificial intelligence.

商品描述(中文翻譯)

**探索聯邦學習背後的概念、演算法和應用**

在《聯邦學習與未來智慧無線網路》中,一組傑出的研究者提供了一系列強大且具洞察力的資源,涵蓋了驅動聯邦學習的基礎概念和演算法,以及它們在無線通信系統中的應用說明。編輯們納入了研究通信資源提供如何影響聯邦學習的性能、準確性、收斂性、可擴展性以及安全性和隱私的作品。

在本書中,讀者將探索一系列主題,展示聯邦學習演算法、概念以及適用於無線通信的設計和優化問題。讀者還將發現:

- 對聯邦學習的基本概念和演算法的全面介紹,包括水平、垂直和混合聯邦學習(FL)
- 對聯邦學習的無線通信網路設計和優化的綜合探討
- 對未來無線網路的新型聯邦學習演算法和框架的實用討論
- 在邊緣智能、自動駕駛、物聯網(IoT)、邊緣計算(MEC)、區塊鏈以及內容快取和分發方面的廣泛案例研究

《聯邦學習與未來智慧無線網路》非常適合對機器學習感興趣的電機和計算機科學工程師、研究人員、教授及研究生,並將使負責監管和制定人工智慧政策的監管機構和機構行為者受益。

作者簡介

Yao Sun, PhD, is a Lecturer with the University of Glasgow in the United Kingdom. He was a former Research Fellow at UESTC in Chengdu, China.

Chaoqun You is a Research Fellow at the Singapore University of Technology and Design. She was formerly an Academic Guest with the Department of Electronic Computer Engineering at the University of Toronto.

Gang Feng is a Professor at the University of Electronic Science and Technology of China. He was an associate professor at Nanyang Technological University.

Lei Zhang, PhD, is a Professor at the University of Glasgow in the United Kingdom. He was formerly a Research Fellow at the 5G Innovation Centre at the University of Surrey.

作者簡介(中文翻譯)

孫耀,博士,是英國格拉斯哥大學的講師。他曾是中國成都電子科技大學的研究員。

游超群,是新加坡科技設計大學的研究員。她曾是多倫多大學電子計算機工程系的學術訪客。

馮剛,是中國電子科技大學的教授。他曾是南洋理工大學的副教授。

張磊,博士,是英國格拉斯哥大學的教授。他曾是薩里大學5G創新中心的研究員。