Statistical Machine Learning: A Unified Framework
暫譯: 統計機器學習:統一框架

Golden, Richard

  • 出版商: CRC
  • 出版日期: 2020-07-02
  • 售價: $4,870
  • 貴賓價: 9.5$4,627
  • 語言: 英文
  • 頁數: 536
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1138484695
  • ISBN-13: 9781138484696
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms.

 

Book Features:

 

 

 

 

 

 

 

 

  • Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms
  • Matrix calculus methods for supporting machine learning analysis and design applications
  • Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions
  • Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification

 

This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible.

 

About the Author:

Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.

商品描述(中文翻譯)

最近新機器學習架構的多樣性和複雜性迅速增長,這需要開發改進的方法來設計、分析、評估和傳達機器學習技術。《統計機器學習:統一框架》為學生、工程師和科學家提供了數學統計和非線性優化理論的工具,使他們能夠成為機器學習領域的專家。特別是,本書中的材料直接支持舊的、新的以及尚未發明的非線性高維機器學習算法的數學分析和設計。

書籍特色:

- 統一的經驗風險最小化框架支持對廣泛使用的監督式、非監督式和強化學習算法進行嚴謹的數學分析
- 矩陣微積分方法支持機器學習的分析和設計應用
- 確保自適應、批量、小批量、MCEM和MCMC學習算法收斂的明確條件,這些算法最小化單峰和多峰目標函數
- 在可能的模型錯誤指定情況下,對M估計量和模型選擇標準(如AIC和BIC)的漸近性質進行特徵描述的明確條件

這本進階教材適合研究生或高度積極的本科生,特別是在統計學、計算機科學、電氣工程和應用數學領域。該教材是自足的,只假設讀者具備低年級線性代數和高年級概率論的知識。具備這些最低先決條件的學生、專業工程師和多學科科學家將會發現這本書具有挑戰性但又易於理解。

關於作者:

Richard M. Golden(博士、碩士、學士)是德克薩斯大學達拉斯分校的認知科學教授及電氣工程參與教員。Golden博士在過去三十年中,已在統計學和機器學習領域的各種主題上發表文章並在科學會議上演講。他的長期研究興趣包括確定確定性和隨機機器學習算法收斂的條件,以及在可能錯誤指定的概率模型下進行估計和推斷的研究。

作者簡介

Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.

作者簡介(中文翻譯)

理查德·M·戈登(博士、碩士、學士)是德克薩斯州達拉斯大學的認知科學教授及電機工程參與教員。戈登博士在過去三十年中,發表了多篇文章並在科學會議上就統計學和機器學習領域的廣泛主題進行演講。他的長期研究興趣包括確定確定性和隨機機器學習演算法收斂的條件,以及在可能錯誤指定的機率模型下進行估計和推斷的研究。