Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies
暫譯: 強化學習於網絡物理系統:附網絡安全案例研究

Chong Li, Meikang Qiu

買這商品的人也買了...

相關主題

商品描述

Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies was inspired by recent developments in the fields of reinforcement learning (RL) and cyber-physical systems (CPSs). Rooted in behavioral psychology, RL is one of the primary strands of machine learning. Different from other machine learning algorithms, such as supervised learning and unsupervised learning, the key feature of RL is its unique learning paradigm, i.e., trial-and-error. Combined with the deep neural networks, deep RL become so powerful that many complicated systems can be automatically managed by AI agents at a superhuman level. On the other hand, CPSs are envisioned to revolutionize our society in the near future. Such examples include the emerging smart buildings, intelligent transportation, and electric grids.

However, the conventional hand-programming controller in CPSs could neither handle the increasing complexity of the system, nor automatically adapt itself to new situations that it has never encountered before. The problem of how to apply the existing deep RL algorithms, or develop new RL algorithms to enable the real-time adaptive CPSs, remains open. This book aims to establish a linkage between the two domains by systematically introducing RL foundations and algorithms, each supported by one or a few state-of-the-art CPS examples to help readers understand the intuition and usefulness of RL techniques.

Features

 

 

 

 

 

 

 

 

  • Introduces reinforcement learning, including advanced topics in RL
  • Applies reinforcement learning to cyber-physical systems and cybersecurity
  • Contains state-of-the-art examples and exercises in each chapter
  • Provides two cybersecurity case studies

Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies is an ideal text for graduate students or junior/senior undergraduates in the fields of science, engineering, computer science, or applied mathematics. It would also prove useful to researchers and engineers interested in cybersecurity, RL, and CPS. The only background knowledge required to appreciate the book is a basic knowledge of calculus and probability theory.

商品描述(中文翻譯)

《強化學習於網路物理系統:結合網路安全案例研究》受到強化學習(Reinforcement Learning, RL)和網路物理系統(Cyber-Physical Systems, CPS)領域近期發展的啟發。強化學習根植於行為心理學,是機器學習的主要分支之一。與其他機器學習算法(如監督學習和非監督學習)不同,強化學習的關鍵特徵在於其獨特的學習範式,即試錯法。結合深度神經網絡,深度強化學習(Deep RL)變得如此強大,以至於許多複雜系統可以由人工智慧代理以超人類的水平自動管理。另一方面,網路物理系統被預期在不久的將來將徹底改變我們的社會。這類例子包括新興的智慧建築、智能交通和電力網。

然而,傳統的手動編程控制器在網路物理系統中無法處理系統日益增加的複雜性,也無法自動適應其從未遇到過的新情況。如何應用現有的深度強化學習算法,或開發新的強化學習算法以實現實時自適應的網路物理系統,仍然是一個未解決的問題。本書旨在通過系統地介紹強化學習的基礎和算法,建立兩個領域之間的聯繫,每個算法都由一個或幾個最先進的網路物理系統範例支持,以幫助讀者理解強化學習技術的直覺和實用性。

特點

- 介紹強化學習,包括強化學習中的進階主題
- 將強化學習應用於網路物理系統和網路安全
- 每章包含最先進的範例和練習
- 提供兩個網路安全案例研究

《強化學習於網路物理系統:結合網路安全案例研究》是科學、工程、計算機科學或應用數學領域研究生或大學三、四年級學生的理想教材。對於對網路安全、強化學習和網路物理系統感興趣的研究人員和工程師也將非常有用。欣賞本書所需的唯一背景知識是基本的微積分和概率論知識。