Multivariate Biomarker Discovery: Data Science Methods for Efficient Analysis of High-Dimensional Biomedical Data
Dziuda, Darius M.
- 出版商: Cambridge
- 出版日期: 2024-06-06
- 售價: $3,140
- 貴賓價: 9.5 折 $2,983
- 語言: 英文
- 頁數: 300
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1316518701
- ISBN-13: 9781316518700
-
相關分類:
Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Multivariate biomarker discovery is increasingly important in the realm of biomedical research, and is poised to become a crucial facet of personalized medicine. This will prompt the demand for a myriad of novel biomarkers representing distinct 'omic' biosignatures, allowing selection and tailoring treatments to the various individual characteristics of a particular patient. This concise and self-contained book covers all aspects of predictive modeling for biomarker discovery based on high-dimensional data, as well as modern data science methods for identification of parsimonious and robust multivariate biomarkers for medical diagnosis, prognosis, and personalized medicine. It provides a detailed description of state-of-the-art methods for parallel multivariate feature selection and supervised learning algorithms for regression and classification, as well as methods for proper validation of multivariate biomarkers and predictive models implementing them. This is an invaluable resource for scientists and students interested in bioinformatics, data science, and related areas.
商品描述(中文翻譯)
多變量生物標記發現在生物醫學研究領域中變得越來越重要,並且有望成為個人化醫學的關鍵方面。這將促使對各種不同個體特徵的選擇和定制治療的需求,需要大量代表不同'omic'生物標誌的新型生物標記。本書簡明扼要地涵蓋了基於高維數據的生物標記發現的預測建模的所有方面,以及用於醫學診斷、預後和個人化醫學的簡潔且堅固的多變量生物標記的現代數據科學方法。它詳細描述了並行多變量特徵選擇和監督學習算法的最新方法,用於回歸和分類,以及適當驗證多變量生物標記和實施它們的預測模型的方法。這是一個對生物信息學、數據科學和相關領域感興趣的科學家和學生的寶貴資源。