Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing

Rahman, Abdul, Redino, Christopher, Shetty, Sachin

  • 出版商: Wiley
  • 出版日期: 2025-01-09
  • 售價: $4,550
  • 貴賓價: 9.5$4,323
  • 語言: 英文
  • 頁數: 288
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1394206453
  • ISBN-13: 9781394206452
  • 相關分類: Reinforcement人工智慧DeepLearning
  • 尚未上市,無法訂購

相關主題

商品描述

A comprehensive and up-to-date application of reinforcement learning concepts to offensive and defensive cybersecurity

In Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing, a team of distinguished researchers delivers an incisive and practical discussion of reinforcement learning (RL) in cybersecurity that combines intelligence preparation for battle (IPB) concepts with multi-agent techniques. The authors explain how to conduct path analyses within networks, how to use sensor placement to increase the visibility of adversarial tactics and increase cyber defender efficacy, and how to improve your organization's cyber posture with RL and illuminate the most probable adversarial attack paths in your networks.

Containing entirely original research, this book outlines findings and real-world scenarios that have been modeled and tested against custom generated networks, simulated networks, and data. You'll also find:

  • A thorough introduction to modeling actions within post-exploitation cybersecurity events, including Markov Decision Processes employing warm-up phases and penalty scaling
  • Comprehensive explorations of penetration testing automation, including how RL is trained and tested over a standard attack graph construct
  • Practical discussions of both red and blue team objectives in their efforts to exploit and defend networks, respectively
  • Complete treatment of how reinforcement learning can be applied to real-world cybersecurity operational scenarios

Perfect for practitioners working in cybersecurity, including cyber defenders and planners, network administrators, and information security professionals, Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing will also benefit computer science researchers.

商品描述(中文翻譯)

《強化學習在網路安全作戰中的應用:人工智慧在滲透測試中的應用》

在《強化學習在網路安全作戰中的應用:人工智慧在滲透測試中的應用》一書中,一組傑出的研究者深入且實用地探討了強化學習(RL)在網路安全中的應用,將戰鬥情報準備(IPB)概念與多代理技術相結合。作者解釋了如何在網路中進行路徑分析,如何利用感測器佈局來提高對敵方戰術的可見性並增強網路防禦者的效能,以及如何利用強化學習改善組織的網路安全姿態,並揭示網路中最可能的敵方攻擊路徑。

本書包含完全原創的研究,概述了針對自訂生成的網路、模擬網路和數據進行建模和測試的發現和實際情境。您還會發現:
- 對於後利用網路安全事件中行為建模的徹底介紹,包括使用熱身階段和懲罰縮放的馬可夫決策過程
- 對滲透測試自動化的全面探索,包括如何在標準攻擊圖構造上訓練和測試強化學習
- 對紅隊和藍隊在各自努力利用和防禦網路中的目標的實用討論
- 強化學習如何應用於現實世界網路安全操作情境的完整處理

本書非常適合從事網路安全工作的實務者,包括網路防禦者和規劃者、網路管理員以及資訊安全專業人士,《強化學習在網路安全作戰中的應用:人工智慧在滲透測試中的應用》也將使計算機科學研究者受益。