Machine and Deep Learning Using MATLAB: Algorithms and Tools for Scientists and Engineers
暫譯: 使用 MATLAB 的機器學習與深度學習:科學家與工程師的演算法與工具
Al-Malah, Kamal I. M.
- 出版商: Wiley
- 出版日期: 2023-10-24
- 售價: $5,950
- 貴賓價: 9.5 折 $5,653
- 語言: 英文
- 頁數: 592
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1394209088
- ISBN-13: 9781394209088
-
相關分類:
Matlab、DeepLearning、Algorithms-data-structures
海外代購書籍(需單獨結帳)
商品描述
In-depth resource covering machine and deep learning methods using MATLAB tools and algorithms, providing insights and automating decision-making processes
Machine and Deep Learning Using MATLAB introduces early career professionals to the power of MATLAB to explore machine and deep learning applications by explaining the relevant MATLAB tool or app and how it is used for a given method or a collection of methods. Its properties, in terms of input and output arguments, are explained, the limitations or applicability is indicated via an accompanied text or a table, and a complete running example is shown with all needed MATLAB command prompt code.
The text also presents the results, in the form of figures or tables, in parallel with the given MATLAB code, and the MATLAB written code can be later used as a template for trying to solve new cases or datasets. Throughout, the text features worked examples in each chapter for self-study with an accompanying website providing solutions and coding samples. Highlighted notes draw the attention of the user to critical points or issues.
Readers will also find information on:
- Numeric data acquisition and analysis in the form of applying computational algorithms to predict the numeric data patterns (clustering or unsupervised learning)
- Relationships between predictors and response variable (supervised), categorically sub-divided into classification (discrete response) and regression (continuous response)
- Image acquisition and analysis in the form of applying one of neural networks, and training model accuracy, model loss, and RMSE for training a given model
- Retraining and creation for image labeling, object identification, regression classification, and text recognition
Machine and Deep Learning Using MATLAB is a useful and highly comprehensive resource on the subject for professionals, advanced students, and researchers who have some familiarity with MATLAB and are situated in engineering and scientific fields, who wish to gain mastery over the software and its numerous applications.
商品描述(中文翻譯)
深入資源,涵蓋使用 MATLAB 工具和演算法的機器學習和深度學習方法,提供見解並自動化決策過程
使用 MATLAB 的機器學習和深度學習 介紹了早期職業專業人士如何利用 MATLAB 探索機器學習和深度學習應用,通過解釋相關的 MATLAB 工具或應用程式及其在特定方法或一系列方法中的使用方式。其在輸入和輸出參數方面的特性被解釋,限制或適用性則通過附帶的文字或表格進行說明,並展示了一個完整的運行範例,包含所有所需的 MATLAB 命令提示碼。
文本還以圖形或表格的形式呈現結果,與給定的 MATLAB 代碼並行,所寫的 MATLAB 代碼可以作為嘗試解決新案例或數據集的模板。在整個過程中,文本在每一章中提供了自學的範例,並附有網站提供解決方案和代碼範例。重點註解吸引用戶注意關鍵點或問題。
讀者還會找到以下資訊:
- 數值數據的獲取和分析,通過應用計算演算法來預測數值數據模式(聚類或無監督學習)
- 預測變數與響應變數之間的關係(有監督),分類為分類(離散響應)和回歸(連續響應)
- 圖像獲取和分析,通過應用神經網絡之一,訓練模型的準確性、模型損失和 RMSE 以訓練給定模型
- 圖像標記、物體識別、回歸分類和文本識別的再訓練和創建
使用 MATLAB 的機器學習和深度學習 是一本對於專業人士、高級學生和研究人員來說非常有用且全面的資源,適合那些對 MATLAB 有一定熟悉度並位於工程和科學領域的人士,旨在掌握該軟體及其眾多應用。
作者簡介
Kamal I. M. Al-Malah received his PhD degree from Oregon State University in 1993. He served as a Professor of Chemical Engineering in Jordan and Gulf countries, as well as Former Chairman of the Chemical Engineering Department at the University of Hail in Saudi Arabia. Professor Al-Malah is an expert in both Aspen Plus(R) and MATLAB(R) applications. He has created a bundle of Windows-based software for engineering applications.
作者簡介(中文翻譯)
Kamal I. M. Al-Malah 於1993年獲得俄勒岡州立大學的博士學位。他曾擔任約旦及海灣國家的化學工程教授,以及沙烏地阿拉伯海爾大學化學工程系的前系主任。Al-Malah教授是Aspen Plus(R) 和 MATLAB(R) 應用的專家。他創建了一套基於Windows的工程應用軟體。