Beginning R: An Introduction to Statistical Programming (Paperback)
暫譯: R 語言入門:統計程式設計導論 (平裝本)

Larry Pace

  • 出版商: Apress
  • 出版日期: 2012-10-17
  • 售價: $1,850
  • 貴賓價: 9.5$1,758
  • 語言: 英文
  • 頁數: 336
  • 裝訂: Paperback
  • ISBN: 1430245549
  • ISBN-13: 9781430245544
  • 相關分類: R 語言
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Beginning R: An Introduction to Statistical Programming is a hands-on book showing how to use the R language, write and save R scripts, build and import data files, and write your own custom statistical functions. R is a powerful open-source implementation of the statistical language S, which was developed by AT&T. R has eclipsed S and the commercially-available S-Plus language, and has become the de facto standard for doing, teaching, and learning computational statistics.

R is both an object-oriented language and a functional language that is easy to learn, easy to use, and completely free. A large community of dedicated R users and programmers provides an excellent source of R code, functions, and data sets. R is also becoming adopted into commercial tools such as Oracle Database. Your investment in learning R is sure to pay off in the long term as R continues to grow into the go to language for statistical exploration and research.

  • Covers the freely-available R language for statistics
  • Shows the use of R in specific uses case such as simulations, discrete probability solutions, one-way ANOVA analysis, and more
  • Takes a hands-on and example-based approach incorporating best practices with clear explanations of the statistics being done

What you’ll learn

  • Acquire and install R
  • Import and export data and scripts
  • Generate basic statistics and graphics
  • Program in R to write custom functions
  • Use R for interactive statistical explorations
  • Implement simulations and other advanced techniques

Who this book is for

Beginning R: An Introduction to Statistical Programming is an easy-to-read book that serves as an instruction manual and reference for working professionals, professors, and students who want to learn and use R for basic statistics. It is the perfect book for anyone needing a free, capable, and powerful tool for exploring statistics and automating their use.

Table of Contents

Part I. Learning the R Language
1. Getting R and Getting Started
2. Programming in R
3. Writing Reusable Functions
4. Summary Statistics

Part II. Using R for Descriptive Statistics
5. Creating Tables and Graphs
6. Discrete Probability Distributions
7. Computing Standard Normal Probabilities

Part III. Using R for Inferential Statistics
8. Creating Confidence Intervals
9. Performing t Tests 
10.  Implementing One-Way ANOVA
11.  Implementing Advanced ANOVA
12. Simple Correlation and Regression in R
13. Multiple Correlation and Regression in R
14. Logistic Regression
15. Performing Chi-Square Tests
16. Working in Nonparametric Statistics

Part IV. Taking R to the Next Level
17. Using R for Simulation
18. Resampling and Bootstrapping
19. Creating R Packages
20. Executing R Packages

商品描述(中文翻譯)

Beginning R: An Introduction to Statistical Programming》是一本實用的書籍,展示如何使用 R 語言、撰寫和儲存 R 腳本、建立和匯入數據檔案,以及撰寫自定義的統計函數。R 是一個強大的開源統計語言 S 的實現,該語言由 AT&T 開發。R 已經超越了 S 和商業可用的 S-Plus 語言,並成為進行、教學和學習計算統計的事實標準。

R 既是一種物件導向語言,也是一種函數式語言,易於學習、易於使用,且完全免費。龐大的 R 使用者和程式設計師社群提供了豐富的 R 代碼、函數和數據集。R 也逐漸被商業工具如 Oracle Database 採用。投資學習 R 將在長期內獲得回報,因為 R 正在成為統計探索和研究的首選語言。

- 涵蓋免費的 R 語言用於統計
- 展示 R 在特定使用案例中的應用,如模擬、離散機率解決方案、單因子 ANOVA 分析等
- 採用實作和範例為基礎的方法,結合最佳實踐,並清楚解釋所進行的統計

### 您將學到的內容
- 獲取和安裝 R
- 匯入和匯出數據及腳本
- 生成基本統計和圖形
- 在 R 中編程以撰寫自定義函數
- 使用 R 進行互動式統計探索
- 實施模擬和其他高級技術

### 本書適合誰
Beginning R: An Introduction to Statistical Programming》是一本易於閱讀的書籍,作為工作專業人士、教授和學生的操作手冊和參考資料,適合想學習和使用 R 進行基本統計的人士。這是任何需要一個免費、功能強大且有效工具來探索統計和自動化其使用的人的完美書籍。

### 目錄
**第一部分:學習 R 語言**
1. 獲取 R 和開始使用
2. 在 R 中編程
3. 撰寫可重用的函數
4. 總結統計

**第二部分:使用 R 進行描述性統計**
5. 創建表格和圖形
6. 離散機率分佈
7. 計算標準正態機率

**第三部分:使用 R 進行推論統計**
8. 創建信賴區間
9. 執行 t 檢定
10. 實施單因子 ANOVA
11. 實施高級 ANOVA
12. 在 R 中進行簡單相關和回歸
13. 在 R 中進行多重相關和回歸
14. 邏輯回歸
15. 執行卡方檢定
16. 在非參數統計中工作

**第四部分:將 R 提升到更高的水平**
17. 使用 R 進行模擬
18. 重抽樣和自助法
19. 創建 R 套件
20. 執行 R 套件