Distributed Strategic Learning for Wireless Engineers (Hardcover)
暫譯: 無線工程師的分散式策略學習 (精裝版)
Hamidou Tembine
- 出版商: CRC
- 出版日期: 2012-05-18
- 售價: $4,455
- 貴賓價: 9.5 折 $4,232
- 語言: 英文
- 頁數: 496
- 裝訂: Hardcover
- ISBN: 1439876371
- ISBN-13: 9781439876374
-
相關分類:
Wireless-networks、Radio-networks
立即出貨 (庫存=1)
買這商品的人也買了...
-
$490$382 -
$450$356 -
$980$774 -
$600$468 -
$750$593 -
$550$435 -
$780$663 -
$680$537 -
$860$731 -
$580$458 -
$520$411 -
$680$578 -
$400$316 -
$980$774 -
$480$379 -
$680$537 -
$650$429 -
$590$460 -
$580$452 -
$320$272 -
$360$306 -
$450$356 -
$520$199 -
$1,130$961 -
$360$306
相關主題
商品描述
Although valued for its ability to allow teams to collaborate and foster coalitional behaviors among the participants, game theory’s application to networking systems is not without challenges. Distributed Strategic Learning for Wireless Engineers illuminates the promise of learning in dynamic games as a tool for analyzing network evolution and underlines the potential pitfalls and difficulties likely to be encountered.
Establishing the link between several theories, this book demonstrates what is needed to learn strategic interaction in wireless networks under uncertainty, randomness, and time delays. It addresses questions such as:
- How much information is enough for effective distributed decision making?
- Is having more information always useful in terms of system performance?
- What are the individual learning performance bounds under outdated and imperfect measurement?
- What are the possible dynamics and outcomes if the players adopt different learning patterns?
- If convergence occurs, what is the convergence time of heterogeneous learning?
- What are the issues of hybrid learning?
- How can one develop fast and efficient learning schemes in scenarios where some players have more information than the others?
- What is the impact of risk-sensitivity in strategic learning systems?
- How can one construct learning schemes in a dynamic environment in which one of the players do not observe a numerical value of its own-payoffs but only a signal of it?
- How can one learn "unstable" equilibria and global optima in a fully distributed manner?
The book provides an explicit description of how players attempt to learn over time about the game and about the behavior of others. It focuses on finite and infinite systems, where the interplay among the individual adjustments undertaken by the different players generates different learning dynamics, heterogeneous learning, risk-sensitive learning, and hybrid dynamics.
商品描述(中文翻譯)
雖然博弈理論因其能夠促進團隊合作並在參與者之間培養聯合行為而受到重視,但其在網絡系統中的應用並非沒有挑戰。《無線工程師的分散式策略學習》闡明了在動態博弈中學習的潛力,作為分析網絡演變的工具,並強調了可能遇到的潛在陷阱和困難。
本書建立了幾個理論之間的聯繫,展示了在不確定性、隨機性和時間延遲下,學習無線網絡中的策略互動所需的條件。它解決了以下問題:
- 有效的分散式決策需要多少信息?
- 擁有更多信息在系統性能上是否總是有用?
- 在過時和不完美的測量下,個體學習性能的界限是什麼?
- 如果參與者採用不同的學習模式,可能的動態和結果是什麼?
- 如果發生收斂,異質學習的收斂時間是多久?
- 混合學習的問題是什麼?
- 如何在某些參與者擁有比其他人更多信息的情況下,開發快速且高效的學習方案?
- 風險敏感性在策略學習系統中的影響是什麼?
- 如何在動態環境中構建學習方案,其中一個參與者無法觀察到自身收益的數值,而只能觀察到一個信號?
- 如何以完全分散的方式學習「不穩定」的均衡和全局最優解?
本書明確描述了參與者如何隨著時間的推移學習遊戲及其他參與者的行為。它專注於有限和無限系統,其中不同參與者所進行的個體調整之間的相互作用產生了不同的學習動態、異質學習、風險敏感學習和混合動態。