Natural Language Annotation for Machine Learning (Paperback)
暫譯: 機器學習的自然語言標註 (平裝本)
James Pustejovsky, Amber Stubbs
- 出版商: O'Reilly
- 出版日期: 2012-12-04
- 定價: $1,500
- 售價: 8.8 折 $1,320
- 語言: 英文
- 頁數: 342
- 裝訂: Paperback
- ISBN: 1449306667
- ISBN-13: 9781449306663
-
相關分類:
Machine Learning
-
相關翻譯:
面向機器學習的自然語言標註 (Natural language annotation for macbhine learning) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$880$695 -
$620$490 -
$550$435 -
$780$663 -
$1,200$948 -
$350$333 -
$400$380 -
$349$297 -
$940$700 -
$480$379 -
$680$578 -
$360$252 -
$350$277 -
$520$411 -
$780$616 -
$690$538 -
$680$537 -
$450$441 -
$474$450 -
$880$695 -
$680$537 -
$560$437 -
$500$395 -
$990Web Scraping with Python: Collecting More Data from the Modern Web, 2/e (Paperback)
相關主題
商品描述
Create your own natural language training corpus for machine learning. Whether you’re working with English, Chinese, or any other natural language, this hands-on book guides you through a proven annotation development cycle—the process of adding metadata to your training corpus to help ML algorithms work more efficiently. You don’t need any programming or linguistics experience to get started.
Using detailed examples at every step, you’ll learn how the MATTER Annotation Development Process helps you Model, Annotate, Train, Test, Evaluate, and Revise your training corpus. You also get a complete walkthrough of a real-world annotation project.
- Define a clear annotation goal before collecting your dataset (corpus)
- Learn tools for analyzing the linguistic content of your corpus
- Build a model and specification for your annotation project
- Examine the different annotation formats, from basic XML to the Linguistic Annotation Framework
- Create a gold standard corpus that can be used to train and test ML algorithms
- Select the ML algorithms that will process your annotated data
- Evaluate the test results and revise your annotation task
- Learn how to use lightweight software for annotating texts and adjudicating the annotations
This book is a perfect companion to O’Reilly’s Natural Language Processing with Python.
商品描述(中文翻譯)
建立您自己的自然語言訓練語料庫以進行機器學習。無論您是在處理英語、中文或任何其他自然語言,本書將指導您通過一個經過驗證的標註開發週期——這是一個為您的訓練語料庫添加元數據的過程,以幫助機器學習算法更有效地運作。您不需要任何程式設計或語言學的經驗即可開始。
通過每一步的詳細範例,您將學習如何使用 MATTER 標註開發過程 來 Model、Annotate、Train、Test、Evaluate 和 Revise 您的訓練語料庫。您還將獲得一個真實世界標註項目的完整操作流程。
- 在收集數據集(語料庫)之前,定義明確的標註目標
- 學習分析語料庫語言內容的工具
- 為您的標註項目建立模型和規範
- 檢查不同的標註格式,從基本的 XML 到語言標註框架
- 創建一個可以用來訓練和測試機器學習算法的金標準語料庫
- 選擇將處理您標註數據的機器學習算法
- 評估測試結果並修訂您的標註任務
- 學習如何使用輕量級軟體來標註文本和裁定標註
本書是 O'Reilly 的 使用 Python 進行自然語言處理 的完美伴侶。