Python and HDF5 (Paperback)
Andrew Collette
- 出版商: O'Reilly|英文2書85折
- 出版日期: 2013-12-10
- 定價: $1,020
- 售價: 9.5 折 $969
- 貴賓價: 9.0 折 $918
- 語言: 英文
- 頁數: 152
- 裝訂: Paperback
- ISBN: 1449367836
- ISBN-13: 9781449367831
-
相關分類:
Python、程式語言
立即出貨 (庫存=1)
買這商品的人也買了...
-
$850$808 -
$820$648 -
$580$458 -
$400$316 -
$620$484 -
$580$458 -
$1,421Absolute C++, 6/e (IE-Paperback)
-
$580$458 -
$834$792 -
$590$460 -
$390$308 -
$450$356 -
$480$379 -
$500$395 -
$580$452 -
$520$411 -
$580$458 -
$680$612 -
$690$545 -
$490$387 -
$352白話深度學習與 TensorFlow
-
$590$502 -
$580$458 -
$580$452 -
$1,800$1,710
相關主題
商品描述
Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.
Through real-world examples and practical exercises, you’ll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you’re familiar with the basics of Python data analysis, this is an ideal introduction to HDF5.
- Get set up with HDF5 tools and create your first HDF5 file
- Work with datasets by learning the HDF5 Dataset object
- Understand advanced features like dataset chunking and compression
- Learn how to work with HDF5’s hierarchical structure, using groups
- Create self-describing files by adding metadata with HDF5 attributes
- Take advantage of HDF5’s type system to create interoperable files
- Express relationships among data with references, named types, and dimension scales
- Discover how Python mechanisms for writing parallel code interact with HDF5
商品描述(中文翻譯)
在Python中使用HDF5存儲科學數據,獲得實踐經驗。這本實用指南將快速使您熟悉使用HDF5存檔和共享從GB到TB大小的數值數據集的細節、最佳實踐和陷阱。
通過實際示例和實踐練習,您將探索科學數據集、層次組織的群組、用戶定義元數據和互操作文件等主題。這些示例適用於Python 2和Python 3的用戶。如果您熟悉Python數據分析的基礎知識,這是HDF5的理想入門。
以下是本書的主要內容:
- 使用HDF5工具進行設置並創建第一個HDF5文件
- 通過學習HDF5數據集對象來處理數據集
- 了解數據集分塊和壓縮等高級功能
- 學習使用HDF5的層次結構,使用群組
- 通過使用HDF5屬性添加元數據來創建自描述文件
- 利用HDF5的類型系統創建互操作文件
- 使用引用、命名類型和維度刻度來表達數據之間的關係
- 了解Python編寫並行代碼的機制如何與HDF5交互作用
以上是本書的內容概述,將幫助您快速掌握HDF5的使用。