Basic Principles of Structural Equation Modeling: An Introduction to LISREL and EQS (Springer Texts in Statistics)
Ralph O. Mueller
- 出版商: Springer
- 出版日期: 2011-10-03
- 售價: $2,370
- 貴賓價: 9.5 折 $2,252
- 語言: 英文
- 頁數: 232
- 裝訂: Paperback
- ISBN: 1461284554
- ISBN-13: 9781461284550
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
During the last two decades, structural equation modeling (SEM) has emerged as a powerful multivariate data analysis tool in social science research settings, especially in the fields of sociology, psychology, and education. Although its roots can be traced back to the first half of this century, when Spearman (1904) developed factor analysis and Wright (1934) introduced path analysis, it was not until the 1970s that the works by Karl Joreskog and his associates (e. g. , Joreskog, 1977; Joreskog and Van Thillo, 1973) began to make general SEM techniques accessible to the social and behavioral science research communities. Today, with the development and increasing avail ability of SEM computer programs, SEM has become a well-established and respected data analysis method, incorporating many of the traditional analysis techniques as special cases. State-of-the-art SEM software packages such as LISREL (Joreskog and Sorbom, 1993a,b) and EQS (Bentler, 1993; Bentler and Wu, 1993) handle a variety of ordinary least squares regression designs as well as complex structural equation models involving variables with arbitrary distributions. Unfortunately, many students and researchers hesitate to use SEM methods, perhaps due to the somewhat complex underlying statistical repre sentation and theory. In my opinion, social science students and researchers can benefit greatly from acquiring knowledge and skills in SEM since the methods-applied appropriately-can provide a bridge between the theo retical and empirical aspects of behavioral research.
商品描述(中文翻譯)
在過去的二十年中,結構方程模型(SEM)已成為社會科學研究領域中一種強大的多變量數據分析工具,特別是在社會學、心理學和教育學等領域。儘管其根源可以追溯到本世紀的前半段,當時斯皮爾曼(Spearman,1904)發展了因子分析,而賴特(Wright,1934)引入了路徑分析,但直到1970年代,卡爾·喬雷斯科格(Karl Joreskog)及其同事(例如,Joreskog,1977;Joreskog和Van Thillo,1973)的研究才開始使一般的SEM技術對社會和行為科學研究社群變得可及。如今,隨著SEM電腦程式的發展和日益普及,SEM已成為一種成熟且受尊重的數據分析方法,並將許多傳統分析技術納入作為特例。最先進的SEM軟體包如LISREL(Joreskog和Sorbom,1993a,b)和EQS(Bentler,1993;Bentler和Wu,1993)能夠處理各種普通最小二乘回歸設計以及涉及任意分佈變數的複雜結構方程模型。不幸的是,許多學生和研究人員對使用SEM方法感到猶豫,這或許是因為其背後的統計表述和理論相對複雜。在我看來,社會科學的學生和研究人員若能掌握SEM的知識和技能,將會獲益良多,因為這些方法在適當應用的情況下,可以為行為研究的理論與實證之間架起一座橋樑。