Big Data Analytics with Spark: A Practitioner's Guide to Using Spark for Large Scale Data Analysis (Paperback)
暫譯: 使用 Spark 進行大數據分析:實務者指南
Mohammed Guller
- 出版商: Apress
- 出版日期: 2015-12-25
- 售價: $2,190
- 貴賓價: 9.5 折 $2,081
- 語言: 英文
- 頁數: 304
- 裝訂: Paperback
- ISBN: 1484209656
- ISBN-13: 9781484209653
-
相關分類:
Spark、大數據 Big-data、Data Science
-
相關翻譯:
Spark 大數據分析新利器─資料科學家與數據分析師非用不可的入門指南書 (Big Data Analytics with Spark: A Practitioner's Guide to Using Spark for Large Scale Data Analysis) (繁中版)
買這商品的人也買了...
-
$2,030$1,929 -
$2,350$2,233 -
$1,570$1,492 -
$825Machine Learning with R, 2/e (Paperback)
-
$2,000$1,900 -
$1,690$1,606 -
$360$180 -
$5,350$5,083
相關主題
商品描述
Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert.
Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics.
This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources.
The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it.What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language.
There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost―possibly a big boost―to your career.商品描述(中文翻譯)
《大數據分析與 Spark》是一本逐步學習 Spark 的指南,Spark 是一個開源的快速且通用的集群計算框架,專為大規模數據分析而設計。您將學習如何使用 Spark 進行不同類型的大數據分析專案,包括批次處理、互動式分析、圖形分析和流數據分析,以及機器學習。此外,本書將幫助您成為一位備受追捧的 Spark 專家。
Spark 是當前最熱門的大數據技術之一。如今,設備、應用程式和用戶產生的數據量正在爆炸性增長。因此,對於能夠分析大規模數據並從中釋放價值的工具需求迫切。Spark 是一項強大的技術,能夠滿足這一需求。例如,您可以使用 Spark 通過高效的快取和迭代算法進行低延遲計算;利用其命令行介面的特性進行簡單且互動式的數據分析;利用其快速的批次處理和低延遲特性來處理實時數據流等等。因此,Spark 的採用率正在迅速增長,並逐漸取代 Hadoop MapReduce 成為大數據分析的首選技術。
本書介紹了 Spark 及相關的大數據技術。它涵蓋了 Spark 核心及其附加庫,包括 Spark SQL、Spark Streaming、GraphX 和 MLlib。《大數據分析與 Spark》因此是為忙碌的專業人士撰寫的,他們更喜歡從一個整合的來源學習新技術,而不是花費無數小時在互聯網上試圖從不同來源中挑選零碎的資訊。
本書還提供了一章關於 Scala 的內容,Scala 是當前最熱門的函數式編程語言,也是 Spark 的基礎程式。您將學習 Scala 中函數式編程的基本概念,以便能夠用它編寫 Spark 應用程式。
更重要的是,《大數據分析與 Spark》還介紹了其他常與 Spark 一起使用的大數據技術,如 Hive、Avro、Kafka 等等。因此,本書是自給自足的;您需要了解的所有技術都已涵蓋。您唯一需要具備的知識是任何語言的編程能力。
目前對於具備大數據專業知識的人才需求極為迫切,因此公司願意為具備 Spark 和 Scala 等領域技能的人才支付高額薪資。因此,閱讀本書並吸收其原則將為您的職業生涯提供提升——可能是一個巨大的提升。