Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R
Taweh Beysolow II
- 出版商: Apress
- 出版日期: 2017-07-20
- 售價: $2,560
- 貴賓價: 9.5 折 $2,432
- 語言: 英文
- 頁數: 227
- 裝訂: Paperback
- ISBN: 1484227336
- ISBN-13: 9781484227336
-
相關分類:
R 語言、DeepLearning
-
相關翻譯:
深度學習:R語言實踐指南 (Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R) (簡中版)
相關主題
商品描述
Understand deep learning, the nuances of its different models, and where these models can be applied.
The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools.What You'll Learn- Understand the intuition and mathematics that power deep learning models
- Utilize various algorithms using the R programming language and its packages
- Use best practices for experimental design and variable selection
- Practice the methodology to approach and effectively solve problems as a data scientist
- Evaluate the effectiveness of algorithmic solutions and enhance their predictive power
Who This Book Is For
Students, researchers, and data scientists who are familiar with programming using R. This book also is also of use for those who wish to learn how to appropriately deploy these algorithms in applications where they would be most useful.
商品描述(中文翻譯)
深度學習是一種先進的計算機科學技術,它可以應用於圖像和語音識別等領域。《使用 R 進行深度學習入門》提供了對這些任務的模型進行理論和實踐的理解,並建立在數據科學和機器學習的基礎上。這本逐步指南將幫助您理解這些學科,以便您可以在各種情境中應用這種方法論。所有示例都是使用 R 統計語言教授的,使學生和專業人士能夠使用開源工具實施這些技術。
您將學到以下內容:
- 理解驅動深度學習模型的直覺和數學
- 使用 R 編程語言及其套件使用各種算法
- 使用最佳實踐進行實驗設計和變量選擇
- 作為數據科學家解決問題的方法論
- 評估算法解決方案的有效性並提高其預測能力
本書適合具備 R 編程知識的學生、研究人員和數據科學家閱讀。對於希望學習如何在最有用的應用中適當地部署這些算法的人來說,本書也很有用。