Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python
Abhishek Nandy, Manisha Biswas
- 出版商: Apress
- 出版日期: 2017-12-08
- 售價: $2,300
- 貴賓價: 9.5 折 $2,185
- 語言: 英文
- 頁數: 167
- 裝訂: Paperback
- ISBN: 1484232844
- ISBN-13: 9781484232842
-
相關分類:
DeepLearning、Python、程式語言、Reinforcement、TensorFlow
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$780$663 -
$780$616 -
$980$774 -
$1,872Deep Learning: A Practitioner's Approach (Paperback)
-
$352Python 計算機視覺編程 (Programming Computer Vision with Python)
-
$480$408 -
$1,617Deep Learning (Hardcover)
-
$2,538Deep Learning for Medical Image Analysis
-
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback)
-
$653深度學習、優化與識別 (Deep Learning,Optimization and Recognition)
-
$857深度學習 (Deep Learning)
-
$580$458 -
$403深度學習與計算機視覺 : 算法原理、框架應用與代碼實現 (Deep Learning & Computer Vision:Algorithms and Examples)
-
$1,830$1,739 -
$1,810$1,720 -
$450$356 -
$454黑客大曝光:工業控制系統安全 (Hacking Exposed Industrial Control Systems: ICS and SCADA Security Secrets & Solutions)
-
$281修改軟件的藝術 : 構建易維護代碼的 9條最佳實踐 (Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of Your Software)
-
$2,140$2,033 -
$690$538 -
$1,188Deep Reinforcement Learning Hands-On
-
$1,200$948 -
$1,260Learning Kali Linux: Security Testing, Penetration Testing, and Ethical Hacking
-
$480$379 -
$2,140$2,033
相關主題
商品描述
Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You’ll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process.
Reinforcement Learning discusses algorithm implementations important for reinforcement learning, including Markov’s Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI before looking at Open AI Gym. You’ll then learn about Swarm Intelligence with Python in terms of reinforcement learning.
The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There’s also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you'll delve into Google’s Deep Mind and see scenarios where reinforcement learning can be used.
What You'll Learn
- Absorb the core concepts of the reinforcement learning process
- Use advanced topics of deep learning and AI
- Work with Open AI Gym, Open AI, and Python
- Harness reinforcement learning with TensorFlow and Keras using Python
Who This Book Is For
Data scientists, machine learning and deep learning professionals, developers who want to adapt and learn reinforcement learning.
商品描述(中文翻譯)
掌握強化學習,這是機器學習中一個熱門領域,從基礎知識開始:了解代理和環境的演變,並清楚了解它們之間的相互關係。然後,您將使用與強化學習相關的理論,並了解構建強化學習過程的概念。
《強化學習》討論了強化學習中重要的算法實現,包括馬爾可夫決策過程和半馬爾可夫決策過程。下一部分將向您展示如何開始使用Open AI,然後介紹Open AI Gym。接著,您將學習使用Python進行強化學習的群體智能。
本書的最後一部分從TensorFlow環境開始,概述了如何將強化學習應用於TensorFlow。還介紹了可以與強化學習一起使用的框架Keras。最後,您將深入研究Google的Deep Mind,並了解強化學習可以應用的場景。
《本書的學習目標》
- 掌握強化學習過程的核心概念
- 使用深度學習和人工智慧的高級主題
- 使用Open AI Gym、Open AI和Python進行工作
- 使用Python、TensorFlow和Keras進行強化學習
《本書的讀者對象》
- 數據科學家、機器學習和深度學習專業人士
- 希望適應和學習強化學習的開發人員