Python Reinforcement Learning
暫譯: Python 強化學習

Ravichandiran, Sudharsan, Saito, Sean, Shanmugamani, Rajalingappaa

  • 出版商: Packt Publishing
  • 出版日期: 2019-04-17
  • 售價: $1,650
  • 貴賓價: 9.5$1,568
  • 語言: 英文
  • 頁數: 496
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1838649778
  • ISBN-13: 9781838649777
  • 相關分類: Python程式語言ReinforcementDeepLearning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms.

The Learning Path starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. As you make your way through the book, you'll work on various datasets including image, text, and video. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore technologies such as TensorFlow and OpenAI Gym to implement deep learning reinforcement learning algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning.

By the end of the Learning Path, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence to solve various problems in real-life.

This Learning Path includes content from the following Packt products:

  • Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran
  • Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani

商品描述(中文翻譯)

強化學習(Reinforcement Learning, RL)是人工智慧中最具趨勢和最有前景的分支。本學習路徑將幫助您掌握基本的強化學習演算法以及進階的深度強化學習演算法。

本學習路徑首先介紹強化學習,接著介紹 OpenAI Gym 和 TensorFlow。然後,您將探索各種 RL 演算法和概念,例如馬可夫決策過程(Markov Decision Process)、蒙地卡羅方法(Monte Carlo methods)和動態規劃(dynamic programming),包括價值迭代(value iteration)和策略迭代(policy iteration)。在閱讀本書的過程中,您將使用各種數據集,包括圖像、文本和視頻。這本充滿範例的指南將介紹深度強化學習演算法,例如 Dueling DQN、DRQN、A3C、PPO 和 TRPO。您將在多個領域獲得經驗,包括遊戲、圖像處理和物理模擬。您將探索 TensorFlow 和 OpenAI Gym 等技術,以實現深度學習強化學習演算法,這些演算法還能預測股價、生成自然語言,甚至構建其他神經網絡。您還將學習想像增強代理(imagination-augmented agents)、從人類偏好中學習(learning from human preference)、DQfD、HER,以及許多強化學習的最新進展。

在學習路徑結束時,您將擁有實施強化學習和深度強化學習所需的所有知識和經驗,並且您將準備好進入人工智慧的世界,以解決現實生活中的各種問題。

本學習路徑包含以下 Packt 產品的內容:

- Sudharsan Ravichandiran 的《Hands-On Reinforcement Learning with Python》
- Sean Saito、Yang Wenzhuo 和 Rajalingappaa Shanmugamani 的《Python Reinforcement Learning Projects》