Database Benchmarking and Stress Testing: An Evidence-Based Approach to Decisions on Architecture and Technology
暫譯: 資料庫基準測試與壓力測試:基於證據的架構與技術決策方法

Bert Scalzo

  • 出版商: Apress
  • 出版日期: 2018-10-09
  • 售價: $1,260
  • 貴賓價: 9.5$1,197
  • 語言: 英文
  • 頁數: 260
  • 裝訂: Paperback
  • ISBN: 1484240073
  • ISBN-13: 9781484240076
  • 相關分類: 資料庫
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Provide evidence-based answers that can be measured and relied upon by your business. Database administrators will be able to make sound architectural decisions in a fast-changing landscape of virtualized servers and container-based solutions based on the empirical method presented in this book for answering “what if” questions about database performance.
 
Today’s database administrators face numerous questions such as: 
  • What if we consolidate databases using multitenant features? 
  • What if we virtualize database servers as Docker containers? 
  • What if we deploy the latest in NVMe flash disks to speed up IO access?
  • Do features such as compression, partitioning, and in-memory OLTP earn back their price? 
  • What if we move our databases to the cloud?
As an administrator, do you know the answers or even how to test the assumptions?
 
Database Benchmarking and Stress Testing introduces you to database benchmarking using industry-standard test suites such as the TCP series of benchmarks, which are the same benchmarks that vendors rely upon. You’ll learn to run these industry-standard benchmarks and collect results to use in answering questions about the performance impact of architectural changes, technology changes, and even down to the brand of database software. You’ll learn to measure performance and predict the specific impact of changes to your environment. You’ll know the limitations of the benchmarks and the crucial difference between benchmarking and workload capture/reply. 
 

This book teaches you how to create empirical evidence in support of business and technology decisions. It’s about not guessing when you should be measuring. Empirical testing is scientific testing that delivers measurable results. Begin with a hypothesis about the impact of a possible architecture or technology change. Then run the appropriate benchmarks to gather data and predict whether the change you’re exploring will be beneficial, and by what order of magnitude. Stop guessing. Start measuring. Let Database Benchmarking and Stress Testing show the way.

 
 
What You'll Learn
  • Understand the industry-standard database benchmarks, and when each is best used
  • Prepare for a database benchmarking effort so reliable results can be achieved
  • Perform database benchmarking for consolidation, virtualization, and cloud projects
  • Recognize and avoid common mistakes in benchmarking database performance
  • Measure and interpret results in a rational, concise manner for reliable comparisons
  • Choose and provide advice on benchmarking tools based on their pros and cons
 
Who This Book Is For
 
Database administrators and professionals responsible for advising on architectural decisions such as whether to use cloud-based services, whether to consolidate and containerize, and who must make recommendations on storage or any other technology that impacts database performance
 

商品描述(中文翻譯)

提供可量測且可靠的證據來支持您的業務。資料庫管理員將能夠根據本書中提出的經驗方法,對快速變化的虛擬伺服器和基於容器的解決方案的架構決策做出明智的選擇,並回答有關資料庫性能的「如果」問題。

今天的資料庫管理員面臨許多問題,例如:
- 如果我們使用多租戶功能來整合資料庫,會怎樣?
- 如果我們將資料庫伺服器虛擬化為 Docker 容器,會怎樣?
- 如果我們部署最新的 NVMe 快閃磁碟來加速 IO 存取,會怎樣?
- 壓縮、分區和內存 OLTP 等功能是否能夠回本?
- 如果我們將資料庫移至雲端,會怎樣?

作為一名管理員,您知道答案或如何測試這些假設嗎?

資料庫基準測試與壓力測試》將介紹使用行業標準測試套件進行資料庫基準測試,例如 TCP 系列基準測試,這些是供應商所依賴的基準測試。您將學會運行這些行業標準基準測試並收集結果,以回答有關架構變更、技術變更,甚至是資料庫軟體品牌的性能影響問題。您將學會測量性能並預測環境變更的具體影響。您將了解基準測試的限制,以及基準測試與工作負載捕獲/回覆之間的關鍵區別。

本書教您如何創建支持業務和技術決策的經驗證據。這是關於在應該測量時不去猜測。經驗測試是提供可量測結果的科學測試。從對可能的架構或技術變更影響的假設開始。然後運行適當的基準測試以收集數據,並預測您正在探索的變更是否會有益,以及其影響的大小。停止猜測。開始測量。讓《資料庫基準測試與壓力測試》指引您前進。

您將學到什麼
- 了解行業標準的資料庫基準測試,以及每個基準測試的最佳使用時機
- 為資料庫基準測試做準備,以便獲得可靠的結果
- 針對整合、虛擬化和雲端專案執行資料庫基準測試
- 辨識並避免在資料庫性能基準測試中常見的錯誤
- 以理性、簡潔的方式測量和解釋結果,以便進行可靠的比較
- 根據基準測試工具的優缺點選擇並提供建議

本書適合誰閱讀
資料庫管理員及負責提供架構決策建議的專業人士,例如是否使用雲端服務、是否進行整合和容器化,以及必須對影響資料庫性能的存儲或其他技術提出建議的人士。