The Art of Reinforcement Learning: Fundamentals, Mathematics, and Implementations with Python
Hu, Michael
- 出版商: Apress
- 出版日期: 2023-12-09
- 定價: $2,100
- 售價: 9.5 折 $1,995
- 語言: 英文
- 頁數: 307
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484296052
- ISBN-13: 9781484296059
-
相關分類:
Python、程式語言、Reinforcement、DeepLearning
立即出貨 (庫存=1)
商品描述
Unlock the full potential of reinforcement learning (RL), a crucial subfield of Artificial Intelligence, with this comprehensive guide. This book provides a deep dive into RL's core concepts, mathematics, and practical algorithms, helping you to develop a thorough understanding of this cutting-edge technology.
Beginning with an overview of fundamental concepts such as Markov decision processes, dynamic programming, Monte Carlo methods, and temporal difference learning, this book uses clear and concise examples to explain the basics of RL theory. The following section covers value function approximation, a critical technique in RL, and explores various policy approximations such as policy gradient methods and advanced algorithms like Proximal Policy Optimization (PPO).
This book also delves into advanced topics, including distributed reinforcement learning, curiosity-driven exploration, and the famous AlphaZero algorithm, providing readers with a detailed account of these cutting-edge techniques.
With a focus on explaining algorithms and the intuition behind them, The Art of Reinforcement Learning includes practical source code examples that you can use to implement RL algorithms. Upon completing this book, you will have a deep understanding of the concepts, mathematics, and algorithms behind reinforcement learning, making it an essential resource for AI practitioners, researchers, and students.
What You Will Learn
- Grasp fundamental concepts and distinguishing features of reinforcement learning, including how it differs from other AI and non-interactive machine learning approaches
- Model problems as Markov decision processes, and how to evaluate and optimize policies using dynamic programming, Monte Carlo methods, and temporal difference learning
- Utilize techniques for approximating value functions and policies, including linear and nonlinear value function approximation and policy gradient methods
- Understand the architecture and advantages of distributed reinforcement learning
- Master the concept of curiosity-driven exploration and how it can be leveraged to improve reinforcement learning agents
- Explore the AlphaZero algorithm and how it was able to beat professional Go players
Who This Book Is For
Machine learning engineers, data scientists, software engineers, and developers who want to incorporate reinforcement learning algorithms into their projects and applications.
商品描述(中文翻譯)
解鎖強化學習(RL)的全部潛力,這是人工智慧的一個關鍵子領域,本書提供了一個全面的指南。本書深入探討了RL的核心概念、數學和實用算法,幫助您全面了解這一前沿技術。
本書首先概述了馬爾可夫決策過程、動態規劃、蒙特卡羅方法和時間差異學習等基本概念,並通過清晰簡潔的示例解釋了RL理論的基礎知識。接下來的部分介紹了值函數逼近,這是RL中的一個關鍵技術,並探討了各種策略逼近方法,如策略梯度方法和高級算法,如近端策略優化(PPO)。
本書還深入探討了分佈式強化學習、基於好奇心的探索和著名的AlphaZero算法等高級主題,為讀者提供了這些前沿技術的詳細介紹。
《強化學習的藝術》著重於解釋算法及其背後的直覺,並提供了實用的源代碼示例,供您用於實現RL算法。閱讀完本書後,您將對強化學習的概念、數學和算法有深入的理解,這使得它成為AI從業者、研究人員和學生的重要資源。
您將學到什麼:
- 掌握強化學習的基本概念和特點,包括它與其他AI和非交互式機器學習方法的區別
- 將問題建模為馬爾可夫決策過程,並使用動態規劃、蒙特卡羅方法和時間差異學習來評估和優化策略
- 利用近似值函數和策略的技術,包括線性和非線性值函數逼近和策略梯度方法
- 理解分佈式強化學習的架構和優勢
- 掌握基於好奇心的探索的概念,以及如何利用它來改進強化學習代理
- 探索AlphaZero算法及其如何擊敗職業圍棋選手
本書適合對將強化學習算法應用於項目和應用程序中的機器學習工程師、數據科學家、軟件工程師和開發人員。
作者簡介
Michael Hu is a skilled software engineer with over a decade of experience in designing and implementing enterprise-level applications. He's a passionate coder who loves to delve into the world of mathematics and has a keen interest in cutting-edge technologies like machine learning and deep learning, with a particular interest in deep reinforcement learning. He has build various open-source projects on Github, which closely mimic the state-of-the-art reinforcement learning algorithms developed by DeepMind, such as AlphaZero, MuZero, and Agent57. Fluent in both English and Chinese, Michael currently resides in the bustling city of Shanghai, China.
作者簡介(中文翻譯)
Michael Hu 是一位經驗豐富的軟體工程師,擁有超過十年的設計和實施企業級應用程式的經驗。他是一位熱情的程式設計師,喜愛深入研究數學世界,對機器學習和深度學習等尖端技術有濃厚的興趣,尤其對深度強化學習有特別的興趣。他在Github上建立了多個開源項目,這些項目密切模仿DeepMind開發的最先進的強化學習算法,如AlphaZero、MuZero和Agent57。Michael能流利地使用英文和中文,目前居住在中國繁華的上海市。