買這商品的人也買了...
-
$2,070Understanding Linux Network Internals (Paperback)
-
$2,000$1,900 -
$590$502 -
$1,350$1,323 -
$360$281 -
$480$379 -
$2,980$2,831 -
$780$616 -
$550$468 -
$352Python 編程實戰:運用設計模式、並發和程序庫創建高質量程序
-
$620$484 -
$680$537 -
$780$616 -
$400$316 -
$690$538 -
$1,630$1,549 -
$860$731 -
$500$395 -
$360$281 -
$580$458 -
$590$460 -
$390$332 -
$420$332 -
$1,710$1,620 -
$1,500$1,425
相關主題
商品描述
Build software that combines Python’s expressivity with the performance and control of C (and C++). It’s possible with Cython, the compiler and hybrid programming language used by foundational packages such as NumPy, and prominent in projects including Pandas, h5py, and scikits-learn. In this practical guide, you’ll learn how to use Cython to improve Python’s performance—up to 3000x— and to wrap C and C++ libraries in Python with ease.
Author Kurt Smith takes you through Cython’s capabilities, with sample code and in-depth practice exercises. If you’re just starting with Cython, or want to go deeper, you’ll learn how this language is an essential part of any performance-oriented Python programmer’s arsenal.
- Use Cython’s static typing to speed up Python code
- Gain hands-on experience using Cython features to boost your numeric-heavy Python
- Create new types with Cython—and see how fast object-oriented programming in Python can be
- Effectively organize Cython code into separate modules and packages without sacrificing performance
- Use Cython to give Pythonic interfaces to C and C++ libraries
- Optimize code with Cython’s runtime and compile-time profiling tools
- Use Cython’s prange function to parallelize loops transparently with OpenMP
商品描述(中文翻譯)
建構結合Python的表達能力與C(和C++)的效能和控制的軟體。這是可能的,因為有Cython,這個編譯器和混合程式語言被NumPy等基礎套件使用,並在Pandas、h5py和scikits-learn等專案中佔有重要地位。在這本實用指南中,您將學習如何使用Cython來提升Python的效能,甚至可以提升3000倍,並輕鬆地將C和C++函式庫封裝成Python。
作者Kurt Smith帶您深入了解Cython的功能,並提供示範程式碼和深入的練習。無論您是初次接觸Cython,還是想更深入了解,您都將學習到這個語言是任何以效能為導向的Python程式設計師必備的工具。
- 使用Cython的靜態類型來加速Python程式碼
- 透過使用Cython功能來提升數值計算密集型Python程式的實戰經驗
- 使用Cython創建新的類型,並體驗Python中面向物件編程的高效能
- 有效地將Cython程式碼組織成獨立的模組和套件,同時不損失效能
- 使用Cython為C和C++函式庫提供Pythonic介面
- 使用Cython的執行時和編譯時分析工具來優化程式碼
- 使用Cython的prange函數透明地使用OpenMP並行化迴圈