Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists
暫譯: 機器學習的特徵工程:數據科學家的原則與技術

Alice Zheng, Amanda Casari

買這商品的人也買了...

相關主題

商品描述

Feature engineering is essential to applied machine learning, but using domain knowledge to strengthen your predictive models can be difficult and expensive. To help fill the information gap on feature engineering, this complete hands-on guide teaches beginning-to-intermediate data scientists how to work with this widely practiced but little discussed topic.

Author Alice Zheng explains common practices and mathematical principles to help engineer features for new data and tasks. If you understand basic machine learning concepts like supervised and unsupervised learning, you’re ready to get started. Not only will you learn how to implement feature engineering in a systematic and principled way, you’ll also learn how to practice better data science.

  • Learn exactly what feature engineering is, why it’s important, and how to do it well
  • Use common methods for different data types, including images, text, and logs
  • Understand how different techniques such as feature scaling and principal component analysis work
  • Understand how unsupervised feature learning works in the case of deep learning for images

商品描述(中文翻譯)

特徵工程對於應用機器學習至關重要,但利用領域知識來增強預測模型可能會很困難且成本高昂。為了填補特徵工程的資訊空白,這本完整的實作指南教導初學到中階的資料科學家如何處理這個廣泛實踐但鮮少討論的主題。

作者 Alice Zheng 解釋了常見的實踐和數學原則,以幫助為新數據和任務工程特徵。如果您了解基本的機器學習概念,如監督式學習和非監督式學習,那麼您已經準備好開始了。您不僅會學習如何以系統化和原則性的方式實施特徵工程,還會學習如何更好地實踐資料科學。

- 瞭解特徵工程究竟是什麼、為什麼重要以及如何做好
- 使用針對不同數據類型的常見方法,包括圖像、文本和日誌
- 理解特徵縮放和主成分分析等不同技術的運作方式
- 理解在圖像深度學習中,非監督式特徵學習的運作方式