Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications (Numerical Insights)
暫譯: 遺傳演算法與遺傳程式設計:現代概念與實務應用(數值洞察)
Michael Affenzeller, Stephan Winkler, Stefan Wagner, Andreas Beham
- 出版商: CRC
- 出版日期: 2009-04-09
- 售價: $8,370
- 貴賓價: 9.5 折 $7,952
- 語言: 英文
- 頁數: 379
- 裝訂: Hardcover
- ISBN: 1584886293
- ISBN-13: 9781584886297
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for algorithm development.
The book focuses on both theoretical and empirical aspects. The theoretical sections explore the important and characteristic properties of the basic GA as well as main characteristics of the selected algorithmic extensions developed by the authors. In the empirical parts of the text, the authors apply GAs to two combinatorial optimization problems: the traveling salesman and capacitated vehicle routing problems. To highlight the properties of the algorithmic measures in the field of GP, they analyze GP-based nonlinear structure identification applied to time series and classification problems.
Written by core members of the HeuristicLab team, this book provides a better understanding of the basic workflow of GAs and GP, encouraging readers to establish new bionic, problem-independent theoretical concepts. By comparing the results of standard GA and GP implementation with several algorithmic extensions, it also shows how to substantially increase achievable solution quality.
商品描述(中文翻譯)
《基因演算法與基因程式設計:現代概念與實用應用》討論了基因演算法(Genetic Algorithms, GAs)和基因程式設計(Genetic Programming, GP)中的演算法發展。它將這些演算法應用於重要的組合最佳化問題,並描述了使用 HeuristicLab 作為演算法開發平台的結構識別。
本書專注於理論和實證兩個方面。理論部分探討了基本 GA 的重要特性和特徵,以及作者所開發的主要演算法擴展的特徵。在文本的實證部分,作者將 GA 應用於兩個組合最佳化問題:旅行推銷員問題和容量限制的車輛路由問題。為了突顯 GP 領域中演算法度量的特性,他們分析了應用於時間序列和分類問題的基於 GP 的非線性結構識別。
本書由 HeuristicLab 團隊的核心成員撰寫,提供了對 GA 和 GP 基本工作流程的更深入理解,鼓勵讀者建立新的仿生學、問題無關的理論概念。通過比較標準 GA 和 GP 實現的結果與幾個演算法擴展,它還展示了如何顯著提高可達成的解決方案質量。